BG-gdsAUTO550可调式蓝光凝胶成像分析系统 BG-gdsAUTO550

BG-gdsAUTO550可调式蓝光凝胶成像分析系统

BG-gdsAUTO550

详细描述:

产品概述

专为蓝光检测分析设计的一体化凝胶成像系统,无需任何外接装置可实现检测、成像及分析存储功能

独特:可调激发光源,强度可调

安全:采用蓝绿光源,避免使用毒性很强的EB、避免了紫外伤害和对样本的损伤、有效保护操作者、实验样品和环境

适合大多数灵敏安全的荧光染料:许多灵敏安全的荧光染料的更大吸收波峰并不是紫外光,而是波长400-500nm的蓝绿可见光,适合大多数荧光染料,包括GeneFinder、绿色荧光蛋白、SYBR Green、Gelstar、SYPRO Orange等大多数安全染料

技术指标

高分辨率相机:2592×1944(503

高通透电动镜头:8-48mm,F1.2

可调蓝光激发光源,470nm,透射,强度可调

采用底部激发透射LED光源,数量多达488颗

大面积透射载物台:210×260nm

高度集成设计,自动控制光源、镜头操作

内置高性能低功耗计算机,预置正版操作系统

预留多种接口:WAN口、USB口、VGA等

预装Baygene凝胶成像分析软件

货号 名称 描述 购买
206-180-001 BG-gdsAUTO550可调式蓝光凝胶成像分析系统 咨询客服
货号 名称 品牌 购买

BG-gdsAUTO520凝胶成像分析系统 BG-gdsAUTO520

BG-gdsAUTO520凝胶成像分析系统

BG-gdsAUTO520

详细描述:

1.用于蛋白质泳道分析、DNA/RNA分子量计算、单一条带分析、 Dot-blot电泳分析、菌落计数-培养皿计数、测量面积/密度、 印迹杂交膜放射自显影胶牌、 酶标板、薄层层析板。

2.能够自动识别和手动识别泳道/条带,并对泳道/条带编号,调整泳道(增加/删除),具有泳道矫正功能。

3.全自动控制功能:通过软件实现对图像处理及采集功能直接操作。

4.图像处理功能:调整图像大小、调整亮度、调整灰度、调整对比度、图像旋转、图像反色、图象裁切、图象缩放。

5.具有双向电泳结果分析功能。

6.数据结果与 MS Excel无缝联接。

7.软件终身免费升级

1.数码高分辨率低照度积分摄像头。

2.有效像素:2592×1944(503万)。

3.预览显示:12寸 工业显示屏。

4.检测灵敏度:可测出低至 0.02 ng 的核酸。

5.像素点大小:5.2 × 5.2 μm 。

6.触摸屏、键盘或鼠标均可进行变焦、聚焦、光圈、透射紫外灯及反射灯的全自动控制。

7.电脑控制:高度程序化(电脑控制暗箱/电源/紫外及白光灯的开关/光圈/焦距)。

8.割胶装置:专用观察和割胶装置(可视角度与物体为90度)。

9.镜头:采用日本Computer高通透自动变焦镜头8-48mm,根据要求随意缩放凝胶尺寸。

10.滤色镜片:专为多种荧光染料凝胶成像特性研制的镀膜滤镜UV/IR590nm。

11.定时关机:15分钟定时关机功能,有效延长紫外灯管和紫外玻璃的使用寿命。

12.开门: 下拉式开门和抽屉式载样台。

13.白光透射:21 × 26 cm; 白光板自带电源,光照更均匀使用寿命可长达10万个小时。

14.透射波长:312 nm (254 nm、365 nm为选配件)。

15.载样板尺寸:紫外透射20 × 25 cm、白光透射 20 × 25 cm。

16.包含凝胶图像分析软件

货号 名称 描述 购买
206-170-001 BG-gdsAUTO520凝胶成像分析系统 咨询客服
货号 名称 品牌 购买

InGenius3凝胶成像系统 InGenius3 Gel Documentation System

InGenius3凝胶成像系统

InGenius3 Gel Documentation System

详细描述:

InGenius3为您提供紧凑、易用、经济的凝胶成像和分析系统。系统采用300万像素相机,为您提供高质量的图像。暗箱可轻松的与电脑相连,从而实现GenSys软件对系统的智能控制,方便您实现快速的图像采集、编辑和保存。特色的蓝光透照仪由108个蓝光LED作为光源,对样品和人体无损伤,无需使用EB等毒性染料,用于SYBR Gold, SYBR Green, SYBRSafe, SYPRO Orange, SYPRO Ruby,UltraPower, Ethidium bromide, GelGreen, GelRed等染料的检测。

1 . CCD性能:①物理像素:300万;②图像深度:12 bit/16 bit;③动态范围: 3.6/4.8,灰度级 4096/65536;

2. 镜头: F1.4手动变焦镜头;

3. 光源:

① 透射光源:蓝光透照仪,由108个蓝光LED作为光源,对样品和人体无损伤;紫外透照仪,多种波长的紫外透照仪;透射白光,白光转换板。

② 落射光源:落射白光LED;落射紫外

4. 滤光片抽屉,标配UV干涉滤光片;

5. 软件:标配GeneSys图像采集软件和图像分析软件。

货号 名称 描述 购买
IG3 InGenius3凝胶成像系统 咨询客服
货号 名称 品牌 购买

BG-Vtrans520可见光凝胶透射仪 BG-Vtrans520

BG-Vtrans520可见光凝胶透射仪

BG-Vtrans520

详细描述:

BG-Vtrans520可见光凝胶透射仪采用半导体发光技术,并配有两个特殊的光学滤光片,实现凝胶分析。该仪器超薄设计,可直接放入紫外凝胶成像分析系统中使用,也可在暗室内单独使用。 系统原理: 紫外光和EB(溴化乙锭)会对人体健康及核酸样品产生严重损害,可见光成像系统采用特定波长的可见光作为光源,配合安全灵敏的新型核酸染料GeneFinderTM进行凝胶分析实验,完全避免了紫外光和EB带来的损害,对实验者、实验样品和环境都起到了有效的保护作用。 工作原理: 仪器的光学结构由一个可见光光源和两个滤光片构成。

外型尺寸:(L × W × H)256 × 234 × 56 mm。 观测面积:(L×W×H)200 × 200 mm

货号 名称 描述 购买
206-040-001 BG-Vtrans520可见光凝胶透射仪 咨询客服
货号 名称 品牌 购买

BG-gdsAUTO720化学发光凝胶成像系统 BG-gdsAUTO720

BG-gdsAUTO720化学发光凝胶成像系统

BG-gdsAUTO720

详细描述:

性能特点 。

1.可通过 F/0.8, 高清晰大口径高通透定焦镜头与高灵敏度数码制冷CCD的完美结合,使实验者摆脱烦琐的传统的暗室胶片曝光方式,方便快速高效地获得化学发光的实验结果。  。

2.化学发光与普通凝胶检测的一体化设计,提高实验的效率;  。

3.可通过电脑进行聚焦、透射光源及反射光源的全自动控制;  。

4.可通过电脑进行凝胶与化学发光图像的实时观测 。

5.可通过一键拍摄无需揣摩曝光时间,一键完成western blot结果成像 。

6.可通过一次拍摄无需任何操作即可将marker图像与化学发光图像自动叠加并且自动生成三种不同效果的化学发光图像 。

7.可设定连续采样的次数、起始及终止曝光时间,进行动态连续拍摄而方便获得更佳条件和效果的实验结果; 。

8.应用范围 :

8.1 印迹膜Chemilμminescent、 ECL、ECL plus、CDP Star、SuperSignal、CSPD、 LμmiGlo等。

8.2 核酸检测各种荧光染料,如Ethidiμm bromide、SYBR Gold、SYBR Green、GelSafe、GelRed、GelGreen、SYBR Safe、GelStar

8.3 蛋白检测考马斯亮蓝胶,银染胶,以及各种染料Coomassie Blue、Copper stain、Zinc stain、Flamingo、Oriole、Silver stain、Coomassie Fluor Orange、SYPRO Ruby、Krypton标记胶/膜/芯片等; 。

8.4 其他应用各种杂交膜、蛋白转印膜、培养皿菌落计数、酶标板、点杂交、蛋白芯片、TLC板 

1.致冷CCD:美国原装品牌高分辨率低照度数码制冷CCD芯片Sony ICX285。

2.冷却方: 半导体制冷。

3.冷却温度:低于环境温度 75 ℃(绝对温度 -55 ℃,动态可调实时显示CCD制冷温度)。

4.有效像素: 2750× 2200 (605万像素) 。

5.像素合并: 1×1,2×2,3×3,4×4 。

6.镜头:F/0.8, 高清晰大口径高通透定焦镜头,可通过计算机对焦距电动调整。

7.数据位数:16 bit(65536灰阶)。

8.动态范围 ﹥4.5个数量级 。

9.拍摄:一次拍摄无需任何操作即可将marker图像与化学发光图像自动叠加并且自动生成三种不同效果的化学发光图像  。

10.一键拍摄:无需揣摩曝光时间一键完成western blot结果成像  。

11.紫外:透射紫外,反射紫外

12.辅助光源透射:LED白光板; 双侧反射:反射白光灯(冷光)可通过计算机对透射和反射白光灯进行强度调整  。

13.滤色镜片:标配590nm(EB/Gel Red/Biosafe/Gelsafe)

14.滤光片位置: 6位电脑控制自动定位滤光片轮  。

15.定时关机: 0-60分钟定时关机功能  。

16.拍摄面积:紫外:18 × 18 cm 白光:16 × 16 cm  。

17.软件:专业凝胶图像采集分析处理软件

货号 名称 描述 购买
206-201-001 BG-gdsAUTO720化学发光凝胶成像系统 咨询客服
货号 名称 品牌 购买

BG-gdsAUTO320凝胶成像系统 BG-gdsAUTO320

BG-gdsAUTO320凝胶成像系统

BG-gdsAUTO320

详细描述:

应用范围:可用于DNA/RNA凝胶、蛋白质凝胶、印迹杂交膜放射自显影胶牌、酶标板、薄层层析板、培养皿的成像及分析。

软件功能:

1.用于蛋白质泳道分析、DNA/RNA分子量计算、单一条带分析、 Dot-blot电泳分析,菌落计数-培养皿计数,测量面积/密度、 印迹杂交膜放射自显影胶牌、 酶标板、薄层层析板;

2.能够自动识别和手动识别泳道/条带,并对泳道/条带编号,调整泳道(增加/删除),具有泳道矫正功能;

3.全自动控制功能:通过软件实现对图像处理及采集功能直接操作;

4.图像处理功能:调整图像大小、调整亮度、调整灰度、调整对比度、图像旋转、图像反色、图象裁切、图象缩放;

5.数据结果与MS Excel无缝联接;

6.软件终身免费升级。

1.内置电脑,无需另配。

2.数码高分辨率低照度积分摄像头,有效像素:1280 × 1024(130万)。

3.数据处理系统:工业ITX系列主板 。

4.低功耗处理器,双核1.8G,固态硬盘,128G容量,Windows系统。

5.预览显示:日本三菱 12.1寸工控液晶屏,分辨率 1024 × 768。

6.带有触摸屏,触控灵敏,无线键鼠套装,配有标准网口、USB,COM、VGA。

7.检测灵敏度:可测出低至 0.02 ng 的核酸。

8.像素点大小:5.2 × 5.2 μm 。

9.机箱面板控制:可通过机箱面板进行变焦、聚焦、光圈、透射紫外灯及反射灯的全自动控制。

10.电脑控制:高度程序化(电脑控制暗箱/电源/紫外及白光灯的开关/光圈/焦距)。

11.割胶装置:专用观察和割胶装置(可视角度与物体为90°)。

12.镜头:采用日本Computer高通透自动变焦镜头 8-48 mm,根据要求随意缩放凝胶尺寸。

13.滤色镜片:专为多种荧光染料凝胶成像特性研制的镀膜滤镜UV/IR590nm。

14.定时关机:15分钟定时关机功能,有效延长紫外灯管和紫外玻璃的使用寿命。

15.开门:抽屉式开门载样台。

16.白光透射:特制的紫外转换白光板。

17.透射波长:312 nm(254 nm、365 nm为选配件)。

18.载样板尺寸:紫外透射 20 × 25 cm、白光透射 21 × 26 cm。

19.分析软件:Gel Image Analysis    

货号 名称 描述 购买
206-160-001 BG-gdsAUTO320凝胶成像系统 咨询客服
货号 名称 品牌 购买

Curdlan 凝胶多糖 品牌:Wako


品牌:Wako
CAS No.:54724-00-4
储存条件:室温
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

030-09903

for Biochemistry 1 g 300.00


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录

外观:白色或者浅棕色粉末。
结构:直链,不含支链。
溶解性:不溶于水或者很多有机溶剂。溶于DMSO和甲酸。溶于碱性溶液。
胶稳定性: pH 2.0 ~ 9.5 (胶最强硬度: pH 2 ~ 3)
运用:胶过滤和亲和层析。固定化酶的支持物。研究明胶化试剂。炎症诱导剂。

Curdlan 凝胶多糖 品牌:Wako


品牌:Wako
CAS No.:54724-00-4
储存条件:室温
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

032-09902

for Biochemistry 25 g 440.00


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录 外观:白色或者浅棕色粉末。
结构:直链,不含支链。
溶解性:不溶于水或者很多有机溶剂。溶于DMSO和甲酸。溶于碱性溶液。
胶稳定性: pH 2.0 ~ 9.5 (胶最强硬度: pH 2 ~ 3)
运用:胶过滤和亲和层析。固定化酶的支持物。研究明胶化试剂。炎症诱导剂。

Curdlan 凝胶多糖 品牌:Wako


品牌:Wako
CAS No.:54724-00-4
储存条件:室温
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

034-09901

for Biochemistry 100 g 1,230.00


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录 外观:白色或者浅棕色粉末。
结构:直链,不含支链。
溶解性:不溶于水或者很多有机溶剂。溶于DMSO和甲酸。溶于碱性溶液。
胶稳定性: pH 2.0 ~ 9.5 (胶最强硬度: pH 2 ~ 3)
运用:胶过滤和亲和层析。固定化酶的支持物。研究明胶化试剂。炎症诱导剂。

Atelocollagen, DMEM High Glucose 去端肽胶原,高浓度葡萄糖DMEM 品牌:Cosmo Bio


品牌:Cosmo Bio
CAS No.:
储存条件:-20℃
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

KOU-DME-02H

20 ml 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录 “去端肽胶原 中性溶液

去端肽胶原中性溶液 (pH7.4) 包含高纯度的去端肽胶原,此去端肽胶原提取自牛跟腱。

应用:
· 在胶原凝胶内部培养
· 在胶原凝胶表面培养

优势:
· 在 37℃下溶液会凝胶化。
· 即用型:去端肽胶原已与溶液混合。"

Atelocollagen, RPMI 1640 去端肽胶原,RPMI 1640 品牌:Cosmo Bio


品牌:Cosmo Bio
CAS No.:
储存条件:-20℃
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

KOU-RPM-02

20 ml 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录 "去端肽胶原 中性溶液

去端肽胶原中性溶液 (pH7.4) 包含高纯度的去端肽胶原,此去端肽胶原提取自牛跟腱。

应用:
· 在胶原凝胶内部培养
· 在胶原凝胶表面培养

优势:
· 在 37℃下溶液会凝胶化。
· 即用型:去端肽胶原已与溶液混合。"

12602-47-ALK-赛多利斯Sartorius空气采样凝胶过滤膜

  • 型号 12602-47-ALK
  • 品牌 赛多利斯
  • 【简单介绍】
    品牌 其他品牌 凝胶过滤膜 孔径3um 直径47mm

    赛多利斯Sartorius空气采样凝胶过滤膜,凝胶过滤膜与MD8空气采样器结合使用(凝胶过滤膜使用方法),用于采集空气中传播的微生物和病毒――其无菌包装膜确保可靠、正确的采集结果。

    赛多利斯Sartorius空气采样凝胶过滤膜

    凝胶过滤膜与MD8空气采样器结合使用(凝胶过滤膜使用方法),用于采集空气中传播的微生物和病毒――其无菌包装膜确保可靠、正确的采集结果。

    详细介绍

    凝胶盘式过滤器,无菌, 每个过滤器包装在一个聚乙烯袋内,5个/包

    凝胶过滤膜与MD8空气采样器结合使用,用于对空气中传播的微生物和病毒的采集。一次性使用凝胶过滤膜,独立包装,预**,即连即用,每个都包含一个胶质滤膜和一个支架。凝胶滤膜具有过滤器圆盘,适用于支架17655 (直径80 mm),配MD8 airscan 空气采样器且直径小。

    '优良' 保持率 (Bac. sub. niger 为99.9995%, T3 阶段为 99.94%)

    在相应的采样时间内,该过滤器可有效地收集微生物

    胶质过滤器是完全可溶于水的,因此样品中的微生物可以在不同的培养基中培养,可以测量高、低**的数量,样品不会被抑制剂影响。

    凝胶过滤膜的可溶性是病毒采样的一个先决条件

    凝胶过滤膜

    可溶于水, 孔径 3µm, 厚度约250µm

    截留率

    入口速度0.25m/s,枯草杆菌黑色变种芽孢99.9995%

    Coli-噬菌: 当相对空气湿度50%和入口速度0.3m/s时,噬菌T1, 99.9%

    吞噬体 T3, 0.3 m/s入口流速, 80% 相对空气湿度

    赛多利斯Sartorius空气采样凝胶过滤膜

    产品描述:

    12602-47-ALK-赛多利斯Sartorius空气采样凝胶过滤膜

     


Limulus Amebocyte Lysate J, Lyophilized 鲎试剂J Single(适用于溶胶凝胶法和动态比浊法) 品牌:Wako


品牌:Wako
CAS No.:
储存条件:2-10℃
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

298-22341

for Endotoxin Detection 5 ml 咨询


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录 ◆优点・特色
● 该套装或试剂符合日本药典中收录的《内毒素检测法》
● 该鲎试剂的凝胶化药敏试验滴定度(EU/mL),通过日本药典方内毒素标准(JP-RSE)检测得到。
● 能形成稳固的凝胶,用凝胶化倒转法使判断更为简便

*灵敏度:0.25

Gellan Gum 结冷胶

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

结冷胶Gellan Gum                              结冷胶

Gellan Gum

植物组织培养用for Plant Tissue Culture

制造商:FUJIFILM Wako Pure Chemical Corporation

存储条件:室温

CAS RN®71010-52-1

◆概况

培养工程用试剂>>植物组织培养>>培养基>>固定剂

本产品是将Pseudomonas elodea(伊乐假单胞杆菌)产生的多糖进行脱乙酰处理后纯化而来的,主要成分有葡萄糖、鼠李糖、糖醛酸等。


Gellan Gum                              结冷胶

◆特点

1. 与琼脂相比,凝胶的透明度较高,凝固的固体培养基透明、易于观察培养基的内部。

2. 凝胶化需要可溶性盐。因此,通过盐的种类、通过添加量和结冷胶的添加量来调整凝胶的硬度。

3. 与琼脂相比使用量少,但能获得同等强度的凝胶。

4. 可以加快植物的生长速度。

5. 由于具有热稳定性,因此可以进行多次高压灭菌。

6. 与琼脂一样,加热至90°C以上会溶解,冷却至30~50°C以下就会凝固。


本品是在细菌Pseudomonas elodea分泌的多糖进行脱乙酰处理后进行纯化后得到的干燥粉末,可作为植物组织和微生物培养培养基中琼脂替代品的凝胶剂。与琼脂相比,是0.2~0.4%的低浓度透明凝胶,利于愈伤组织等的生长。

◆用途


植物组织培养基配制用

◆相关信息


外观:白色~淡褐色,结晶性粉末~粉末

来源:Pseudomonas elodea

溶解性:溶于水会变成粘稠的液体

pH信息:pH(10 g/L 浸泡液,25°C):4.0~7.0

※ 本页面产品仅供研究用,研究以外不可使用。


参考文献



1.

Tsuchida, H. , Tamai, T. , Fukayama, H. , Agarie, S. , Nomura, M. , & Onodera, H. , et al. (2001). High level expression of c_4-specific nadp-malic enzyme in leaves and impairment of photoautotrophic growth in a c_3 plant, rice. Plant and Cell Physiology, 42.


2.

Hashimoto, W. , & Murata, K. . (1998). α-l-rhamnosidase of sphingomonas sp. r1 producing an unusual exopolysaccharide of sphingan. Journal of the Agricultural Chemical Society of Japan, 62(6), 7.


3.

Hashimura, Y. , & Ueguchi, C. . (2011). The arabidopsis meristem disorganization 1 gene is required for the maintenance of stem cells through the reduction of dna damage. The Plant Journal, 68(4), 657-669.


4.

Campbell, P. . (2016). Implants and biodegradable fiducial markers.

5.

Ueno Y; Ishikawa T; Watanabe K; Terakura S; Iwakawa H; Okada K; Machida C; Machida Y. (2007). Histone deacetylases and asymmetric leaves2 are involved in the establishment of polarity in leaves of arabidopsis. Plant Cell, 19(2), 445-457.

6.

Saito, & C. (2005). Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the arabidopsis inflorescence stem. THE PLANT CELL ONLINE, 17(2), 548-558.


产品编号 产品名称 产品规格 产品等级
073-03071 Gellan Gum
结冷胶
250 g 植物组织培养用
075-03075 Gellan Gum
结冷胶
500 g 植物组织培养用

Phos-tag™ 凝胶荧光染料

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ 凝胶荧光染料Phos-tag™ 凝胶荧光染料

 


Phos-tag™ 凝胶荧光染料,是一种可在生理pH范围内,对凝胶中的磷酸化蛋白进行染色的荧光染料。进行了SDS-PAGE,用本产品处理聚丙烯酰胺凝胶,可以对磷酸化蛋白进行特异性染色。

本系列有波长不同的 Yellow(黄)、Magenta(品红)、Cyan(蓝绿)、Aqua(浅绿)四种颜色。每管规格为 0.2 mg,可对约20个迷你凝胶进行染色。

 

购买前请注意:

使用Phos-tag 凝胶荧光染料,需要用到 Mixed reagents for Phos-tag™ Common Solution 5×(产品编号:383-15231)。请一同购买。


Phos-tag™ 凝胶荧光染料



◆特点


● 高灵敏度

● 在生理pH下即可染色

● 选择性与pSer、 pTyr、 pHis以及pAsp残基结合

● 无需放射性物质、化学物质标签、抗体

● 2小时内完成染色

◆产品对比


                  其他公司产品A


● 凝胶pH:2~4

● 5个步骤(固定、清洗、染色、脱色、清洗)

● 所需时间:≧5小时

● 溶液更换次数:11次

● 卵清蛋白检测上限:~5 ng/lane

  Phos-tag™ Magenda(品红)


● 凝胶pH:7~8(不进行脱磷酸化)

● 3个步骤(固定、染色、清洗)

● 所需时间:≦2小时

● 溶液更换次数:4次

● 卵清蛋白检测上限:~1 ng/lane

◆应用实例①


磷酸化蛋白与非磷酸化蛋白的染色 Phos-tag™ Aqua(浅绿)

Phos-tag™ 凝胶荧光染料

Lane.No.()内为磷酸基团数目


1. Marker

2. α-酪蛋白(9P)

3. 经ALP处理的α-酪蛋白

4. β-酪蛋白(5P)

5. 经ALP处理的β-酪蛋白

6. 卵清蛋白(2P)

  7. 经ALP处理的卵清蛋白

  8. 胃蛋白酶(1P)

  9. 经ALP处理的胃蛋白酶

10. β-半乳糖苷酶

11. 牛血清白蛋白

12. 碳酸酐酶

Phos-tag™ Aqua(浅绿)染料选择性:用Phos-tag™ Aqua(浅绿)对10%(w/v)的PAGE胶进行染色,其中分别含有四组完整的以及经ALP(碱性磷酸酶)处理的磷酸蛋白(α-酪蛋白,β-酪蛋白,卵清蛋白和胃蛋白酶各1 μg)(左),然后使用考马斯亮蓝CBB G-250染色(右)。

成功特异性地检测出SDS-PAGE后的磷酸化蛋白。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师

 


◆应用实例②


使用Phos-tag™ 荧光凝胶染料的组氨酸、天门冬氨酸的磷酸化分析

细菌通过将信息从组氨酸激酶EnvZ传递到应答调控子OmpR来调节基因的表达。分别分析有自磷酸化能力的EnvZ激酶和被EnvZ催化的OmpR中组氨酸和天门冬氨酸的磷酸化。


Phos-tag™ 凝胶荧光染料

Phos-tag™ 凝胶荧光染料

可以确认Phos-tag™ Magenta(品红)和Phos-tag™ SDS-PAGE 这两种试剂中的His和Asp的磷酸化随激酶的处理时间经过不断增强。尤其是使用Phos-tag™ Magenta(品红)时,可以仅检测出His磷酸化或Asp磷酸化。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师

 


◆应用实例③


用于筛选组氨酸激酶抑制剂(新型抗生素)

使用Phos-tag™荧光凝胶染料,筛选组氨酸激酶抑制剂。


Phos-tag™ 凝胶荧光染料


证实磷酸化依赖组氨酸激酶抑制剂浓度被抑制。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师



参考文献


“Quantitativemonitoring of His and Asp phosphorylation in a bacterial signaling system byusing Phos-tag Magenta/Cyan fluorescent dyes”, Emiko Kinoshita-Kikuta, HiroshiKusamoto, Syogo Ono, Keisuke Akayama, Yoko Eguchi, Masayuki Igarashi, ToshihideOkajima, Ryutaro Utsumi, Eiji Kinoshita, Tohru Koike, Electrophoresis, 2019

◆使用方法

Phos-tag™ 凝胶荧光染料

※调整平衡及清洗溶液以及染色溶液必须使用Mixed reagents for Phos-tag™ Common Solution 5× (产品编号:383-15231)。

◆激发波长/荧光波长

Phos-tag™ Yellow(黄) Phos-tag™ Magenta(品红)
Phos-tag™ 凝胶荧光染料 Phos-tag™ 凝胶荧光染料

Ex/Em=505 nm/514 nm



Ex/Em=547 nm/561 nm



Phos-tag™ Cyan(蓝绿) Phos-tag™ Aqua(浅绿)
Phos-tag™ 凝胶荧光染料 Phos-tag™ 凝胶荧光染料
 Ex/Em=643 nm/661nm Ex/Em=551 nm/564 nm



◆产品列表


产品编号 产品名称 规格
380-15241 Phos-tag™ Yellow
Phos-tag™ 黄色荧光染料
0.2 mg
386-15221 Phos-tag™ Magenta
Phos-tag™ 品红荧光染料
0.2 mg
382-15201 Phos-tag™ Aqua
Phos-tag™ 浅绿荧光染料
0.2 mg
389-15211 Phos-tag™ Cyan
Phos-tag™ 蓝绿荧光染料
0.2 mg
383-15231

Mixed reagents for Phos-tag™ Common Solution

Phos-tag™ 5×染色通用混合溶液

1 EA


◆相关产品


Phos-tag™ Acrylamide

产品编号 产品名称 规格
304-93521 Phos-tag™ Acrylamide AAL-107
Phos-tag™ 丙烯酰胺
10 mg
300-93523 2 mg
304-93526 Phos-tag™ Acrylamide AAL-107 5 mM Aqueous Solution
Phos-tag™ 丙烯酰胺5 mM水溶液
0.3 mL



SuperSep™ Phos-tag


用于Bio-Rad伯乐电泳仪

货号

品名

电泳仪

规格

198-17981

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well,

83×100×3.9mm

Mini-PROTEAN® 

Tetra Cell

(Bio-Rad Laboratories, Inc.)

5 块

195-17991

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well,

83×100×3.9 mm

5 块

用于Life Technologies伯乐电泳仪

货号

品名

电泳仪

规格

192-18001

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well,

100×100×6.6 mm

XCell SureLock® 

Mini-Cell

(Life Technologies, Inc.)

5 块

199-18011

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well,

100×100×6.6 mm

5 块


Phos-tag Biotin


产品编号 产品名称 规格
301-93531 Phos-tag™ Biotin BTL-104
Phos-tag™ 生物素
10 mg
308-97201 Phos-tag™ Biotin BTL-111 1 mM Aqueous Solution
Phos-tag™ 生物素1 mM水溶液
0.1 mL


Phos-tag Agarose


产品编号 产品名称 规格
302-93561 Phos-tag™ Agarose
Phos-tag™ 琼脂糖
0.5 mL
308-93563 3 mL

Phos-tag Tip

产品编号 产品名称 规格
387-07321-8P Phos-tag™ Tip
Phos-tag™ 琼脂糖枪头
8 pcs
387-07321 8 pcs×10


Phos-tag Mass Analytical Kit


产品编号 产品名称 规格
305-93551 Phos-tag™ Mass Analytical Kit
    Phos-tag™ 质谱分析试剂盒
1 set

※ 本页面产品仅供研究用,研究以外不可使用。


产品编号 产品名称 产品规格 产品等级

细胞培养用胶原蛋白 Cellmatrix®Series

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

细胞培养用胶原蛋白细胞培养用胶原蛋白                              Cellmatrix®Series

Cellmatrix® Series

Cellmatrix是作为细胞培养胶原蛋白开发的。可简单再现各种需要使用胶原蛋白的培养方法。

细胞培养用胶原蛋白                              Cellmatrix®Series


◆Cellmatrix® 系列选择指南(Nitta Gelatin提供)



细胞培养用胶原蛋白                              Cellmatrix®Series

优势、特色


Cellmatrix® Type I-A


 ● 猪腱由来,酸可溶性的Type-I胶原蛋白

 ● 浓度3.0 mg/mL、pH3的无菌溶液

 ● 高凝胶强度,适合胶原蛋白・凝胶包埋培养

 ● 凝胶的透明度高,容易显微镜观察


凝胶透明度的比较


细胞培养用胶原蛋白                              Cellmatrix®Series

Type I –A是面对3D培养的产品,对凝胶形成速度

以及透明度进行了优化。可以在细胞下沉到培养容

器底部前,迅速地形成凝胶。且凝胶的透明度非常

高,易于观察细胞。

 Cellmatrix® Type I-C


 ● 猪皮由来的胃蛋白酶可溶化的Type-I胶原蛋白

 ● 浓度3.0 mg/mL、 pH3的无菌溶液

 ● 低粘度,适合包被

 ● 几乎不会凝胶化


 Cellmatrix® Type I-P


 ● 猪腱由来的胃蛋白酶可溶化的Type-I胶原蛋白

 ● 浓度3.0 mg/mL、pH3的无菌溶液

 ● 粘性低、容易处理

 ● 形成凝胶


 Cellmatrix® Type Ⅳ


 ● 用胃蛋白酶处理牛晶状体前囊精制的Type-Ⅳ胶原蛋白

 ● 低粘度、适合包被

 ● 浓度3.0 mg/mL、pH3的无菌溶液

 ● 不会凝胶化

◆胶原蛋白凝胶培养方法


事前准备


细胞培养用胶原蛋白                              Cellmatrix®Series

胶原蛋白凝胶上培养

细胞培养用胶原蛋白                              Cellmatrix®Series

点击此处查看视频版实验操作

胶原蛋白凝胶包埋培养

细胞培养用胶原蛋白                              Cellmatrix®Series


点击此处查看视频版实验操作

胶原蛋白涂层法

细胞培养用胶原蛋白                              Cellmatrix®Series

点击此处查看视频版实验操作

应用


【Type I-A】

  

经胶原蛋白、凝胶包埋培养的

小鼠乳腺癌细胞增殖形态。


Cellmatrix Type I-A具有高凝胶强度


细胞培养用胶原蛋白                              Cellmatrix®Series

细胞培养用胶原蛋白                              Cellmatrix®Series

【Type I-P】

  Cellmatrix Type I-P可形成比较软的凝胶


细胞培养用胶原蛋白                              Cellmatrix®Series


【Type I-C】


  培养细胞的伸展活性

    

细胞培养用胶原蛋白                              Cellmatrix®Series

          左:未涂布                           右:涂布胶原蛋白

彩页下载,请点击:Cellmatrix® 系列 细胞培养级胶原蛋白



【相关资料】

细胞培养用胶原蛋白                              Cellmatrix®Series

Cellmatrix® 胶原蛋白用细胞培养指南

细胞培养用胶原蛋白                              Cellmatrix®Series


Nitta-Gelatin Product Guide

胶原蛋白凝胶培养方法


事前准备


细胞培养用胶原蛋白                              Cellmatrix®Series

胶原蛋白凝胶上培养

细胞培养用胶原蛋白                              Cellmatrix®Series

胶原蛋白凝胶包埋培养

细胞培养用胶原蛋白                              Cellmatrix®Series

胶原蛋白涂层法

细胞培养用胶原蛋白                              Cellmatrix®Series



Q:    请告知胶原蛋白和明胶的差异。为什么明胶在4℃做凝胶,胶原蛋白在37℃做凝胶?

A:    明胶是胶原蛋白的变性产物,具体地说,胶原蛋白是三股螺旋缠绕的结构,分子量为30万道尔顿,经热等因素而被破坏,形成无规则线圈

          结构的蛋白质为明胶。所以明胶和胶原蛋白,一级结构(氨基酸组成)相同,二级结构不同。这个差异反映了胶原蛋白和明胶产生凝胶的

          条件差异。

          胶原蛋白保持三股螺旋缠绕的结构,在螺旋结构外侧排列着疏水性氨基酸——脯氨酸。胶原蛋白凝胶利用这个疏水性氨基酸,通过<温度

          高的一方,具有高结合力>疏水结合,制备明胶。而明胶二级结构被破坏,亲水性氨基酸在外侧排列,通过氢结合和离子结合制作凝胶。

          当温度高时,<氢结合力+离子结合力>克服明胶主链的热运动,不形成凝胶。但是,当变为低温时,<氢结合力+离子结合力>成为热运动

          力量,明胶形成凝胶。

  

 

Q:    用明胶凝胶是否能培养?

A:    用明胶凝胶不能培养。明胶凝胶在37℃的培养条件下不会形成凝胶,将会溶化。

          在组织培养液中,明胶的用途一般为:在培养皿中进行明胶涂层培养,或在明胶海绵上用福尔马林等进行桥联培养。

  

 

Q:    想购买胶原蛋白凝胶,是否有?

A:    以胶原蛋白溶液的状态作为商品销售。可根据附送的手册,进行胶原蛋白凝胶制作。

          请将Cellmatrix Type I-A作为胶原蛋白凝胶培养产品,进行订购。为第一次做胶原蛋白凝胶培养法的顾客,准备了制作凝胶所必须的试剂

          装和胶原蛋白凝胶培养试剂盒。

  

 

Q:    为什么溶解于酸性溶液的胶原蛋白能进行培养?

A:    实际上,在胶原蛋白包埋细胞前,需要将酸性的胶原蛋白溶液调整成中性。

          调整后的胶原蛋白因为低温保持者溶液状态,以这个状态将细胞悬液混合到胶原蛋白溶液中。

          之后,将含有这个细胞的胶原蛋白溶液移到培养皿中,在37℃中加热,胶原蛋白以细胞包埋状态形成凝胶。

          这个就是胶原蛋白凝胶包埋培养法的制作方法。

          详细请参考在线手册。

  

 

Q:    Cellmatrix有很多的胶原蛋白种类,应该选哪个才好?

A:    根据目的不同,变化使用的种类。

          根据主要目的,将产品系列分成如下种类,请参考。

          胶原蛋白凝胶培养试剂盒、Cellmatrix Typr I-A、Cellmatrix TypeI-P适合胶原蛋白凝胶培养法。

          其他的Cellmatrix(Cellmatrix Type I-C,III,IV)不能进行胶原蛋白凝胶培养。

          Cellmatrix Type I-C适合标准的涂层培养法——胶原蛋白涂层培养法。请根据客人实验的细胞及方法,考虑适合的Cellmatrix ,实验性地

          虑其他类型的胶原蛋白。例如,软骨细胞使用Cellmatrix Type II等,表皮细胞使用Cellmatrix Type IV等。

 

  

Q:    为何胶原蛋白凝胶比琼脂凝胶的培养效率好?

A:    请让我简单地说明琼脂培养法和胶原蛋白凝胶培养法的差异。

          被包埋在胶原蛋白凝胶内的细胞,在胶原蛋白基质上以贴壁的状态进行增殖。         .

          可是,被琼脂包埋的细胞,在琼脂基质上以未贴壁状态进行增殖。所以,贴壁依赖性细胞在胶原蛋白凝胶中进行细胞增殖,在琼脂内不进行

          细胞增殖。

          有报告指出:贴壁依赖性比较低的癌细胞,采用胶原蛋白凝胶培养法比采用琼脂培养法,显示高倍数的克隆形成率。

          有众多报告指出:胶原蛋白凝胶法对细胞增殖、细胞分化的诱导、形态形成等有效。

          关于胶原蛋白凝胶培养法的详细报告,请参考主页的论文介绍。

 

 

Q:    胶原蛋白凝胶包埋培养法和胶原蛋白、涂层培养法,有什么不同?

A:    胶原蛋白凝胶包埋培养法是在胶原蛋白凝胶内做细胞包埋,进行细胞培养的方法。

          被包埋到胶原蛋白内的细胞,和体内一样进行三维增殖。

          胶原蛋白涂层培养法是在培养皿上做胶原蛋白薄涂层,然后再上面进行细胞培养的方法,细胞呈单层增殖。

          综上所述,胶原蛋白凝胶包埋培养法是作为细胞外基质,利用胶原蛋白的三维培养法:胶原蛋白涂层培养法是利用胶原蛋白作为细胞吸附因

          子的二维培养法(单层培养法)。

 

  

Q:    想进行胶原蛋白凝胶培养,应该选哪种Cellmatrix才好?

A:    请选Cellmatrix Type I-A。还有为初学者准备的,含有制作胶原蛋白凝胶全部试剂的胶原蛋白凝胶培养试剂盒。

          建议第一次使用的人购买这个胶原蛋白凝胶培养试剂盒,试剂盒货号是638-00781

 

 

Q:    想进行胶原蛋白、涂层培养防法,应该选哪种Cellmatrix才好?

A:    请选Cellmatrix Type I-C。Cellmatrix Type I-C具有低粘度,处理容易,适合标准胶原蛋白涂层培养法。

          根据细胞种类和培养条件的不同,也能得到更好的适合细胞的胶原蛋白涂层。

          例如,表面细胞可使用Cellmatrix Type IV胶原蛋白等。请进行实验研讨。

  

 

Q:    想学习胶原蛋白培养法,请介绍合适的论文。

A:    详细请参考在线手册。

          该手册详细地介绍了:所谓的胶原蛋白是什么、胶原蛋白培养法的效果、胶原蛋白培养发的具体方法等。

          关于论文,请参考主页的论文介绍项目。

  

 

Q:    请具体地告知胶原蛋白、凝胶包埋培养方法。

A:    将作为酸性溶液的胶原蛋白溶液Cellmatrix Type I-A调整成中性。

          调整后的胶原蛋白因为低温,保持着溶液状态,以这个状态将细胞悬浊液混合到胶原蛋白溶液中。之后江汉油田这个细胞的胶原蛋白溶液

          到培养皿中,在37℃中加热,胶原蛋白以细胞包埋状态形成凝胶。

          关于详细 ,请参考在线手册。

 

 

Q:    请具体地告知胶原蛋白涂层的方法。

A:    将Cellmatrix Type I-C用稀盐酸(pH 3.0,约10-3 M)稀释10倍以上,放入培养皿中,在室温中静置30~60分钟。

          静置后,摄取胶原蛋白溶液,以常温、无菌状态干燥培养皿。干燥后,用PBS或培养液洗涤2次,加入细胞悬液,进行普通培养。

  

 

Q:    进行胶原蛋白涂层时,向培养皿注入多少量的胶原蛋白溶液才好?

A:    胶原蛋白溶液注入量为均匀覆盖培养皿底面即可。

          以1 mL/10 cm2比例为标准

 


Q:    Cellmatrix Type IV是否能进行包埋培养?

A:    单独使用Cellmatrix Type IV胶原蛋白不能进行包埋培养。众多胶原蛋白中只有I型胶原蛋白具有凝胶化能力。

          若想研究在包埋培养下的IV型胶原蛋白与细胞的互相作用,请混合I型胶原蛋白IV型胶原蛋白。Cellmatrix Type I和Cellmatrix Type IV的混

          合比例,在1:2~2:1范围为好。混合比例与胶原蛋白凝胶强度的关系,请参考本公司手册<使用胶原蛋白的细胞培养法>。

  

 

Q:    所谓的胶原蛋白是不是培养基?

A:    胶原蛋白不是培养基。所谓的胶原蛋白是培养基的基质。

          胶原蛋白凝胶是在培养基中作为整体结构支撑体的胶原蛋白组织,相当于生物体中的血液。

          在体外的细胞作为胶原蛋白的细胞外基质存在。

          将胶原蛋白作为培养基质使用的胶原蛋白凝胶包埋培养,旨在重现生物内环境的状态。

  

 

Q:    请告知胶原蛋白的稀释方法。

A:    用pH 3.0稀盐酸稀释。因为胶原蛋白具有高粘性,使用像试管一样的细小容器比较难稀释,使用三角烧瓶或离心管(例如:50 mL培养用

          塑料离心管等)等粗的容器比较容易稀释。

          三角烧瓶,像画圆一样摇晃10次左右:离心管,来回颠倒10次左右,进行搅拌稀释。如果,出现起泡,可静置一晚后使用,或以低速离心

          分离(1500 rpm,3 min)脱气后使用。同时,开发了胶原蛋白、涂层培养用低粘度型的Cellmatrix Type I-C。可一起讨论。

  

 

Q:    pH3.0盐酸是多少摩尔值?请告知制作方法。

A:    pH盐酸是10-3摩尔/升。因为盐酸是强酸,浓度基本合适,调整好pH计,就可快速、正确地制作。

          例如,一边用pH仪表测量,一边用巴斯德移液管一滴一滴向100 mL蒸馏水中加入1N的盐酸。

          pH3.0盐酸制成后,请以高压灭菌或过滤灭菌。

 


1.

Matsunaga, M., Hatta, K., Nagafuchi, A., & Takeichi, M. (1988). Guidance of optic nerve fibres by n-cadherin adhesion molecules. Nature, 334(6177), 62-4.

【Cellmatrix® Type I-A. IF:43.07】


2.

Morishita, A. , Kumabe, S. , Nakatsuka, M. , & Iwai, Y. . (2014). A histological study of mineralised tissue formation around implants with 3d culture of hms0014 cells in cellmatrix type i-a collagen gel scaffold in vitro. Okajimas Folia Anatomica Japonica, 91(3), 57-71.

【Cellmatrix® Type I-A】


3.

Nakao, K., Itoh, M., Tomita, Y., Tomooka, Y., & Tsuji, T. (2004). Fgf-2 potently induces both proliferation and dsp expression in collagen type i gel cultures of adult incisor immature pulp cells. Biochemical & Biophysical Research Communications, 325(3), 1052-1059.

【Cellmatrix® Type I-A. IF:2.705】


4.

Udagawa, N., Takahashi, N., Akatsu, T., Tanaka, H., Sasaki, T., & Nishihara, T., et al. (1990). Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7260-7264.

【Cellmatrix® Type I-A. IF:9.58】


5.

Koide, N., Sakaguchi, K., Koide, Y., Asano, K., Kawaguchi, M., & Matsushima, H., et al. (1990). Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Experimental Cell Research, 186(2), 0-235.

【Cellmatrix® Type I-A ,Cellmatrix® Type III,Cellmatrix® Type IV. IF:3.329】


6.

Jabaji, Z., Brinkley, G. J., Khalil, H. A., Sears, C. M., Nan, Y. L., & Lewis, M., et al. (2014). Type i collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. Plos One, 9(9), e107814.

【Cellmatrix® Type I-A. IF:2.776】


7.

Shakado, S., Sakisaka, S., Noguchi, K., Yoshitake, M., Harada, M., & Mimura, Y., et al. (2010). Effects of extracellular matrices on tube formation of cultured rat hepatic sinusoidal endothelial cells. Hepatology, 22(3), 969-973.

【Cellmatrix® Type I-A,Cellmatrix® Type IV. IF:14.971】


8.

Tamura, T., Udagawa, N., Takahashi, N., Miyaura, C., Tanaka, S., & Yamada, Y., et al. (1993). Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 90(24), 11924-11928.

【Cellmatrix® Type I-A. IF:9.58】


9.

Takahashi, N., Udagawa, N., Akatsu, T., Tanaka, H., Isogai, Y., & Suda, T. (1991). Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells*. Endocrinology, 128(4), 1792-1796.

【Cellmatrix® Type I-A. IF:3.8】


10.

Mano, H. . (1996). Mammalian mature-osteoclasts as estrogen target cells. Biochemical & Biophysical Research Communications, 223(3), 637-642.

【Cellmatrix® Type I-A. IF:2.705】


11.

Udagawa, N., Takahashi, N., Jimi, E., Matsuzaki, K., Tsurukai, T., & Itoh, K., et al. (1999). Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/rankl but not macrophage colony-stimulating factor: receptor activator of nf-kappa b ligand. Bone, 25(5), 517-523.

【Cellmatrix® Type I-A. IF:4.36】


12.

Woo, J. T., Kasai, S., Stern, P. H., & Nagai, K. (2010). Compactin suppresses bone resorption by inhibiting the fusion of prefusion osteoclasts and disrupting the actin ring in osteoclasts. Journal of Bone & Mineral Research, 15(4), 650-662.

【Cellmatrix® Type I-A. IF:5.711】


13.

Ishida, K., Murofushi, M., Nakao, K., Morita, R., Ogawa, M., & Tsuji, T. (2011). The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of sonic hedgehog through epithelial–mesenchymal interactions. Biochemical & Biophysical Research Communications, 405(3), 455-461.

【Cellmatrix® Type I-A. IF:2.705】


14.

Nakagawa, H. , Wachi, M. , Woo, J. T. , Kato, M. , Kasai, S. , & Takahashi, F. , et al. (2002). Fenton reaction is primarily involved in a mechanism of (?)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochemical and Biophysical Research Communications, 292(1), 94-101.

【Cellmatrix® Type I-A. IF:2.705】


15.

Onodera, K. I., Fukatsu, T., Kawai, N., Yoshioka, Y., Okamoto, T., & Nakamura, H., et al. (2004). Zooxanthellactone, a novel γ-lactone-type oxylipine from dinoflagellates of symbiodinium sp.: structure, distribution, and biological activity. Bioscience Biotechnology & Biochemistry, 68(4), 848-852.

【Cellmatrix® Type I-A. IF:1.297】


16.

Torisawa, Y. S., Shiku, H., Yasukawa, T., Nishizawa, M., & Matsue, T. (2005). Multi-channel 3-d cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Biomaterials, 26(14), 2165-2172.

【Cellmatrix® Type I-A. IF:10.273】


17.

Murakami, H., Takahashi, N., Tanaka, S., Nakamura, I., Udagawa, N., & Nakajo, S., et al. (1997). Tiludronate inhibits protein tyrosine phosphatase activity in osteoclasts. Bone, 20(5), 399-404.

【Cellmatrix® Type I-A. IF:4.36】


18.

Fujimoto, M., & Mihara, S. I. (1991). Two states of the l-type ca 2+ channel in pc12 cells: different sensitivity to 1,4-dihydropyridines. Neuroscience Letters, 122(1), 9-12.

【Cellmatrix® Type I-A. IF:2.173】


19.

Kawamura, S., Wakitani, S., Kimura, T., Maeda, A., Caplan, A. I., & Shino, K., et al. (1998). Articular cartilage repair: rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand, 69(1), 56-62.

【Cellmatrix® Type I-A】


20.

Tilney, L. G., Derosier, D. J., & Mulroy, M. J. (1980). The organization of actin filaments in the stereocilia of cochlear hair cells. Journal of Cell Biology, 86(1), 244-259.

【Cellmatrix® Type III,Cellmatrix® Type IV. IF:8.891】


21.

Yoshii, C., Ueda, Y., Okamoto, M., & Araki, M. (2007). Neural retinal regeneration in the anuran amphibian xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Developmental Biology, 303(1), 45-56.

【Cellmatrix® Type I-C. IF:2.936】


22.

Aoki, K. , & Matsuda, M. . (2009). Visualization of small gtpase activity with fluorescence resonance energy transfer-based biosensors. NATURE PROTOCOLS, 4(11), 1623-1631.

【Cellmatrix® Type I-C. IF:11.334】


23.

Minakawa, M., Miura, Y., & Yagasaki, K. (2012). Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in l6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochemical & Biophysical Research Communications, 422(3), 469-475.

【Cellmatrix® Type I-C. IF:2.705】


24.

Koide, T., Homma, D. L., Asada, S., & Kitagawa, K. (2005). Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorganic & Medicinal Chemistry Letters, 15(23), 5230-5233.

【Cellmatrix® Type I-C. IF:2.448】


25.

Izuta, H., Shimazawa, M., Tsuruma, K., Araki, Y., Mishima, S., & Hara, H. (2009). Bee products prevent vegf-induced angiogenesis in human umbilical vein endothelial cells. Bmc Complementary & Alternative Medicine, 9(1), 45.

【Cellmatrix® Type I-C. IF:2.479】


26.

Umigai, & Naofumi. (2012). Crocetin, a carotenoid derivative, inhibits vegf-induced angiogenesis via suppression of p38 phosphorylation. Current Neurovascular Research, 9(2), 102-109.

【Cellmatrix® Type I-C. IF:1.811】


27.

Isaji, M., Miyata, H., Ajisawa, Y., Takehana, Y., & Yoshimura, N. (2010). Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. British Journal of Pharmacology, 122(6), 1061-1066.

【Cellmatrix® Type I-P. IF:6.583】


28.

Tokunaga, T., Kiso, T., Namikawa, T., & Ohtsubo, Y. (1999). Camp-independent chloride secretion activated by a vasoactive intestinal peptide in a monolayer culture of human bronchial epithelial cells. Biological & Pharmaceutical Bulletin, 22(7), 745-748.

【Cellmatrix® Type I-C. IF:1.54】


29.

Aoki, Y. , Satoh, K. , Sato, K. , & Suzuki, K. T. . (1992). Induction of glutathioner, sr, -transferase p-form in primary cultured rat liver parenchymal cells by co-planar polychlorinated biphenyl congeners. Biochemical Journal, 281(2), 539-543.

【Cellmatrix® Type I-P. IF:4.331】


30.

Yamamoto, M., Kato, K., & Ikada, Y. (2015). Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. Journal of Biomedical Materials Research, 37(1), 29-36.

【Cellmatrix® Type I-P】


31.

Ishihara, S., Haga, H. M., Mizutani, T., Kawabata, K., Shirato, H., & Nishioka, T. (2010). Integrin beta1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3d collagen matrix. Biochemical & Biophysical Research Communications, 396(3), 651-655.

【Cellmatrix® Type I-C,Cellmatrix® Type I-P. IF:2.705】


32.

Suzuki, M., Ichikawa, K., Sakoda, A., & Sakai, Y. (1993). Long-term culture of primary rat hepatocytes with high albumin secretion using membrane-supported collagen sandwich. Cytotechnology, 11(3), 213.

【Cellmatrix® Type I-P. IF:1.672】


33.

Nakaoka, R. , Tsuchiya, T. , Kato, K. , Ikada, Y. , & Nakamura, A. . (1997). Studies on tumor-promoting activity of polyethylene: inhibitory activity of metabolic cooperation on polyethylene surfaces is markedly decreased by surface modification with collagen but not with rgds peptide. Journal of biomedical materials research, 35(3), 391-397.

【Cellmatrix® Type I-P】


产品编号 产品名称 产品规格 产品等级

胶原蛋白酸性溶液 I-PC、I-AC Atelocollagen/Native Collagen Acidic Solutions

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

胶原蛋白酸性溶液 I-PC、I-AC胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

Atelocollagen/Native Collagen Acidic Solutions

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions



◆概要


本产品为牛皮来源的高纯度胶原蛋白酸性溶液,适用于制备 3D 培养和共培养用支架(支架材料)的胶原蛋白凝胶,以及包被培养皿或培养板等器材。有 I-PC(去端肽胶原蛋白)与 I-AC(天然胶原蛋白)两种类型,去端肽胶原蛋白通过蛋白酶切断天然胶原蛋白分子两端存在的肽。

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

◆应用


胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

包被胶原蛋白


胶原蛋白凝胶中的 3D 培养


在胶原蛋白凝胶上方培养


胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

胶原蛋白凝胶共培养

◆特点


● I-PC(去端肽胶原蛋白)和 I-AC(天然胶原蛋白)中和时,在生理条件下会凝胶化(纤维化)。

● 可选择3mg/mL 与5mg/mL 两种浓度,分别适用于制备包被、3D 培养和共培养用支架(支架材料)的胶原蛋白凝胶。

● 区别于可溶性底物膜制备品,不含细胞来源的生理活性物质、核酸和 MMP 等,可准确评估实验结果。



◆胶原蛋白种类

胶原蛋白酸性溶液 I-PC:牛皮来源去端肽胶原蛋白

胶原蛋白酸性溶液 I-AC:牛皮来源天然胶原蛋白



35 mm 胶原海绵培养皿

◆原理

胶原海绵细胞培养是以胶原蛋白为基础新开发出来的,可用于细胞 3D 培养。多孔胶原海绵是由牛跟腱提取的不溶性I型胶原蛋白制备而成。细胞可渗透入海绵,朝不同方向增殖。

◆优点特色

       所有产品均已灭菌 

◆案例应用

细胞在海绵上培养


产品编号

品名

包装

储存

KOU-CS-35

Collagen sponge for35mm culture dish Bovine tendon   Sterile

5pcs/box

RT

 


Atelocollagen, Permeable membrane for50mmculture dish

◆原理

从牛跟腱中提取的Ⅰ型胶原蛋白制备的可渗透性胶原蛋白膜可用于单层或双层细胞培养。此胶原蛋白膜特别适用于研究在膜两侧培养的不同细胞间的分子相互作用,相互关系。膜的可渗透性允许氨基酸,蛋白质等小分子自由通过胶原蛋白膜,这对于细胞间的营养吸收,物质交换有重要作用。

◆优点特色


 两种不同细胞可在膜两侧生长,因此特别适合研究细胞或小分子相互间的作用。

 可渗透性膜非常适合细胞培养,也适合人工皮肤,人工胰腺等其它人工器官的培养。

产品编号

品名

规格

储存

KOU-MEN-01

Atelocollagen, Permeable membrane for50mmculture   dish

(33mm)Bovine   dermis   Sterile

5pcs/box

-20℃

 


 

Atelocollagen, Honeycomb sponge

◆原理

“蜂窝状”海绵的结构比较特殊,它的孔径大约 200-400μm,密集地向一个方向排列,因此细胞可以顺着小孔渗透增殖。这样的结构,有利于海绵内部的细胞吸收营养物质,排出生物代谢物质。细胞在空腔内增殖,并形成统一的细胞团。

优势:从牛跟腱中提取胶原蛋白制备“蜂窝状”海绵,可以用胶原酶降解此海绵。


 

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

Honeycomb sponge 的电镜图

 

产品编号

品名

规格

储存

KOU-CSH-10

Atelocollagen Honeycomb sponge Bovine dermis

Size: about 3X3X2 mm/sponge   total surface area:2000cm2/g  weight per volume:   12-13mg/ml sterile

100mg/btl

室温

胶原蛋白酸性溶液 I-PC、I-AC                              Atelocollagen/Native Collagen Acidic Solutions

AteloCell 细胞培养胶原.pdf

参考文献

◆I-PC3D培养

1.

Component Analysis and Antiangiogenic Activity of Thailand Stingless Bee Propolis. Ishizu, E., Honda, S., Ohta, T., Vongsak, B., &Kumazawa, S. (2019).Makara Journal Of Technology, 23(2), 77-82.


2.

Development of an in vitro cholestatic drug-induced liver injury evaluation system using HepG2-hNTCP-C4 cells in sandwich configuration.Sakai Y, Okumura H, Iwao T, Watashi K, Ito K, Matsunaga T.Toxicol In Vitro. 2019 Aug 5:104619. doi: 10.1016/j.tiv.2019.104619. [Epub ahead of print]

PMID: 31394163


3.

Isolation of Bipotential Liver Progenitor Cells from Neonatal Mouse Liver.

TanimizuN.Methods Mol Biol. 2019;1905:9-17. PMID: 30536086


4.

FilGAP regulates distinct stages of epithelial tubulogenesis.Zuinen T, Tsutsumi K, OhtaY.BiochemBiophys Res Commun. 2019 Jun 30;514(3):742-749. PMID: 3107826

0

5.

Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.Kato-Negishi M, Onoe H, Ito A, Takeuchi S.AdvHealthc Mater. 2017 Aug;6(15). PMID: 28429415


6.

Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown.Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A.JCI Insight. 2017 Feb 9;2(3):e90905. PMID: 28194443


7.

Interstitial fluid flow-induced growth potential and hyaluronan synthesis of fibroblasts in a fibroblast populated stretched collagen gel culture.Saito N, Adachi H, Tanaka H, Nakata S, Kawada N, Oofusa K, Yoshizato K.BiochimBiophys Acta. 2017 Jun 28;1861(9):2261-2273. PMID: 28668298


8.

Progressive induction of hepatocyte progenitor cells in chronically injured liver.Tanimizu N, Ichinohe N, Yamamoto M, Akiyama H, Nishikawa Y, Mitaka T.Sci Rep. 2017 Jan 4;7:39990. PMID: 28051157


9.

Progranulin and granulin-like protein as novel VEGF-independent angiogenic factors derived from human mesothelioma cells.Eguchi R, Nakano T, Wakabayashi I.Oncogene. 2017 Feb 2;36(5):714-722. PMID: 27345409


10.

Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans – Study of delayed wound healing mechanism.Yamauchi M, Hirohashi Y, Torigoe T, Matsumoto Y, Yamashita K, Kayama M, Sato N, Yotsuyanagi T.BiochemBiophys Res Commun. 2016 May 13;473(4):845-52. PMID: 27037022


11.

Co-expression of S100A14 and S100A16 correlates with a poor prognosis in human breast cancer and promotes cancer cell invasion.Tanaka M, Ichikawa-Tomikawa N, Shishito N, Nishiura K, Miura T, Hozumi A, Chiba H, Yoshida S, Ohtake T, Sugino T.BMC Cancer. 2015 Feb 13;15:53. PMID: 25884418


12.

Use of biomimetic microtissue spheroids and specific growth factor supplementation to improve tenocyte differentiation and adaptation to a collagen-based scaffold in vitro.Theiss F, Mirsaidi A, Mhanna R, Kümmerle J, Glanz S, Bahrenberg G, Tiaden AN, Richards PJ.Biomaterials. 2015 Nov;69:99-109. PMID: 26283157


13.

Recombinant human soluble thrombomodulin attenuates FK506-induced endothelial dysfunction through prevention of Akt inactivation.Eguchi R, Fujimori Y, Okada M, Tamaki H, Wakabayashi I, Ogawa H.Exp Cell Res. 2014 Apr 15;323(1):112-7. PMID: 24582967


14.

A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes.Inagawa Y, Yamada K, Yugawa T, Ohno S, Hiraoka N, Esaki M, Shibata T, Aoki K, Saya H, Kiyono T.Carcinogenesis. 2014 Aug;35(8):1840-6. PMID: 24858378.


15.

Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

Yonemura S.PLoS One. 2014 Nov 13;9(11):e112922. PMID: 25393292


16.

FK506 induces endothelial dysfunction through attenuation of Akt and ERK1/2 independently of calcineurin inhibition and the caspase pathway.Eguchi R, Kubo S, Ohta T, Kunimasa K, Okada M, Tamaki H, Kaji K, Wakabayashi I, Fujimori Y, Ogawa H.Cell Signal. 2013 Sep;25(9):1731-8. PMID: 23707520.


17.

Dynamics of Centrosome Translocation and Microtubule Organization in Neocortical Neurons during Distinct Modes of Polarization.Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M, Miyata T.Cereb Cortex. 2014 May;24(5):1301-1. PMID: 2330763

2

18.

Nymphaeol-A Isolated from Okinawan Propolis Suppresses Angiogenesis and Induces Caspase-Dependent Apoptosis via Inactivation of Survival Signals.Tsuchiya I, Hosoya T, Ushida M, Kunimasa K, Ohta T, Kumazawa S.Evid Based Complement Alternat Med. 2013;2013:826245. PMID: 23710238


19.

Construction of multi-functional extracellular matrix proteins that inhibits migration and tube formation of endothelial cells.Nakamura M, Mie M, Nakamura M, Kobatake E.Biotechnol Lett. 2012 Aug;34(8):1571-7. PMID: 22048848


20.

A selective inhibitor of the Rho kinase pathway, Y-27632, and its influence on wound healing in the corneal stroma.Yamamoto M, Quantock AJ, Young RD, Okumura N, Ueno M, Sakamoto Y, Kinoshita S, Koizumi N.Mol Vis. 2012;18:1727-39. PMID:2281562

6

21.

Features of wound healing shown by fibroblasts obtained from the superficial and deep dermis.Kaminishi-Tanikawa A, Kurita M, Okazaki M, Kawaguchi R, Ihara A, Niikura M, Takushima A, Harii K.J Plast Surg Hand Surg. 2011 Sep;45(4-5):219-25. PMID: 22150144


22.

Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-forming Endothelial Cells through Inactivation of Survival Signal ERK1/2.Kunimasa K, Ahn MR, Kobayashi T, Eguchi R, Kumazawa S, Fujimori Y, Nakano T, Nakayama T, Kaji K, Ohta T.Evid Based Complement Alternat Med. 2011;2011:870753.


23.

Dermal carbonyl modification is related to the yellowish color change of photo-aged Japanese facial skin.Ogura Y, Kuwahara T, Akiyama M, Tajima S, Hattori K, Okamoto K, Okawa S, Yamada Y, Tagami H, Takahashi M, Hirao T.J Dermatol Sci. 2011 Oct;64(1):45-52. PMID: 21798719


24.

Calpain is involved in cisplatin-induced endothelial injury in an in vitro three-dimensional blood vessel model.Eguchi R, Fujimori Y, Ohta T, Kunimasa K, Nakano T.Int J Oncol. 2010 Nov;37(5):1289-96. PMID: 20878076


25.

Effect of monosaccharides composing glycosaminoglycans on type 2 collagen accumulation in a three-dimensional culture of chondrocytes.Kagita E, Ikeda M, Wakitani S, Takagi M.J BiosciBioeng. 2010 Jan;109(1):51-4. PMID: 20129082


26.

Nobiletin, a citrus polymethoxyflavonoid, suppresses multiple angiogenesis-related endothelial cell functions and angiogenesis in vivo.Kunimasa K, Ikekita M, Sato M, Ohta T, Yamori Y, Ikeda M, Kuranuki S, Oikawa T.Cancer Sci. 2010 Nov;101(11):2462-9. PMID: 20670297


27.

Antiangiogenic effects of indole-3-carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC.Kunimasa K, Kobayashi T, Kaji K, Ohta T.

J Nutr. 2010 Jan;140(1):1-6. PMID: 19889811


28.

Correlation between antiangiogenic activity and antioxidant activity of various components from propolis.Ahn MR, Kunimasa K, Kumazawa S, Nakayama T, Kaji K, Uto Y, Hori H, Nagasawa H, Ohta T.Mol Nutr Food Res. 2009 May;53(5):643-51. PMID: 19065585


29.

Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells.Eguchi R, Toné S, Suzuki A, Fujimori Y, Nakano T, Kaji K, Ohta T.Exp Cell Res. 2009 Jan 15;315(2):327-35. PMID: 19022247


30.

Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells.Horikoshi Y, Suzuki A, Yamanaka T, Sasaki K, Mizuno K, Sawada H, Yonemura S, Ohno S.J Cell Sci. 2009 May 15;122(Pt 10):1595-606. PMID: 19401335


31.

Intracellular polarity protein PAR-1 regulates extracellular laminin assembly by regulating the dystroglycan complex.Masuda-Hirata M, Suzuki A, Amano Y, Yamashita K, Ide M, Yamanaka T, Sakai M, Imamura M, Ohno S.Genes Cells. 2009 Jul;14(7):835-50. PMID: 19549170


32.

Proteomic analysis of hypoxia-induced tube breakdown of an in vitro capillary model composed of HUVECs: potential role of p38-regulated reduction of HSP27.Eguchi R, Naitou H, Kunimasa K, Ayuzawa R, Fujimori Y, Ohashi N, Kaji K, Ohta T.Proteomics. 2008 Jul;8(14):2897-906. PMID: 18655027


33.

Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker.Ishimura D, Yamamoto N, Tajima K, Ohno A, Yamamoto Y, Washimi O, Yamada H.Tohoku J Exp Med. 2008 Oct;216(2):149-56.


34.

Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study.Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, Shiraishi T, Morishita S, Yamazaki Y, Kumagai K, Aoki I, Saito T.Arthritis Res Ther. 2008;10(4):R77. PMID: 18616830


35.

Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation.Ahn MR, Kunimasa K, Ohta T, Kumazawa S, Kamihira M, Kaji K, Uto Y, Hori H, Nagasawa H, Nakayama T.Cancer Lett. 2007 Jul 18;252(2):235-43. PMID: 17343983


36.

Hypoxia induces apoptosis of HUVECs in an in vitro capillary model by activating proapoptotic signal p38 through suppression of ERK1/2.Eguchi R, Suzuki A, Miyakaze S, Kaji K, Ohta T.Cell Signal. 2007 Jun;19(6):1121-31. PMID: 17303382


37.

Hypoxia-induced apoptosis and tube breakdown are regulated by p38 MAPK but not by caspase cascade in an in vitro capillary model composed of human endothelial cells.Ohta T, Eguchi R, Suzuki A, Miyakaze S, Ayuzawa R, Kaji K.J Cell Physiol. 2007 Jun;211(3):673-81. PMID: 17373651


38.

Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro: influence on the proliferation and proteoglycan production of HNPSV-1 cells.Sakai D, Mochida J, Iwashina T, Watanabe T, Suyama K, Ando K, Hotta T.Biomaterials. 2006 Jan;27(3):346-53. PMID: 16102816


39.

Effects of low-level hard laser irradiation on mineralization in three-dimensional cultured rat bone marrow cells.Gomi Kazuhiro, Yashima Akihiro, Shirakawa Satoshi, Kanazashi Mikimoto, Sekine Akiko, Kobayashi Kazuyuki, Nagano Takatoshi, Matsui Koutarou, Yamaguchi Hiroyasu, Arai Takashi.J Oral Laser Applications. 2005;5:145-150.


40.

Differentiation of Human Bone Marrow Mesenchymal Stem Cells to Chondrocytes for Construction of Three-dimensional Cartilage Tissue.Matsuda C, Takagi M, Hattori T, Wakitani S, Yoshida T.Cytotechnology. 2005 Jan;47(1-3):11-7. PMID: 19003040


41.

Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes.Nishimoto S, Takagi M, Wakitani S, Nihira T, Yoshida T.J BiosciBioeng. 2005 Jul;100(1):123-6. PMID: 16233863


42.

Activation of matrix metalloproteinase-2 causes peritoneal injury during peritoneal dialysis in rats.Hirahara I, Ogawa Y, Kusano E, Asano Y.Nephrol Dial Transplant. 2004 Jul;19(7):1732-41. PMID: 15128883


43.

Concept for organ engineering: a reconstruction method of rat liver for in vitro culture.Takezawa T, Inoue M, Aoki S, Sekiguchi M, Wada K, Anazawa H, Hanai N.Tissue Eng. 2000 Dec;6(6):641-50. PMID: 11103085


44.

Vitronectin or fibronectin is required for corneal fibroblast-seeded collagen gel contraction.Taliana L, Evans MD, Dimitrijevich SD, Steele JG.Invest Ophthalmol Vis Sci. 2000 Jan;41(1):103-9. PMID: 10634608


45.

Maintenance of embedded pig pancreatic pseudo-islets in a collagen gel matrix: study of the effect of hydrocortisone, a collagenase inhibitor, and nicotinamide on collagenolysis and the morphogenesis of pancreatic islet-cells in collagen gel matrix.Ohgawara H, Mochizuki N, Taira T, Nishijima S, Iwasaki N, Yui R, Hirata Y, Hayakawa T.In Vitro Cell Dev Biol. 1990 Apr;26(4):348-52. PMID: 2160924

◆I-PC共培养

1.

In vivo reprogramming of wound-resident cells generates skin epithelial tissue.Kurita M, Araoka T, Hishida T, O'Keefe DD, Takahashi Y, Sakamoto A, Sakurai M, Suzuki K, Wu J, Yamamoto M, Hernandez-Benitez R, Ocampo A, Reddy P, Shokhirev MN, Magistretti P, NúñezDelicado E, Eto H, Harii K, Izpisua Belmonte JC.Nature. 2018 Sep;561(7722):243-247. PMID: 30185909


2.

Influence of shear stress on phenotype and MMP production of smooth muscle cells in a co-culture model, Journal of Biorheology.Xiaobo Han, Naoya Sakamoto, Noriko Tomita, Hui Meng, Masaaki Sato, Makoto Ohta.J Biorheol (2017) 31(2):50-56.


3.

Fetal Therapy Model of Myelomeningocele with Three-Dimensional Skin Using Amniotic Fluid Cell-Derived Induced Pluripotent Stem Cells.Kajiwara K, Tanemoto T, Wada S, Karibe J, Ihara N, Ikemoto Y, Kawasaki T, Oishi Y, Samura O, Okamura K, Takada S, Akutsu H, Sago H, Okamoto A, Umezawa A.Stem Cell Reports. 2017 Jun 6;8(6):1701-1713. PMID: 28591652


4.

Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells.Fukahori M, Chitose S, Sato K, Sueyoshi S, Kurita T, Umeno H, Monden Y, Yamakawa R.PLoS One. 2016 Jan 5;11(1):e0146151. PMID: 26730600


5.

Hepatocyte growth factor activator inhibitor type 1 maintains the assembly of keratin into desmosomes in keratinocytes by regulating protease-activated receptor 2-dependent p38 signaling.Kawaguchi M, Kanemaru A, Sawaguchi A, Yamamoto K, Baba T, Lin CY, Johnson MD, Fukushima T, Kataoka H.Am J Pathol. 2015 Jun;185(6):1610-23. PMID: 25842366


6.

Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis.Uekita T, Fujii S, Miyazawa Y, Iwakawa R, Narisawa-Saito M, Nakashima K, Tsuta K, Tsuda H, Kiyono T, Yokota J, Sakai R.Mol Cancer Res. 2014 Oct;12(10):1449-59. PMID: 24939643


7.

Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils.Tamai M, Adachi E, Tagawa YI.TissueEng Part A. 2013 Nov;19(21-22):2527-35. PMID: 23815236


8.

Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury.Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T, Hiromura K, Yokoo H, Nojima Y.Am J Physiol Renal Physiol. 2011 Aug;301(2):F387-95. PMID:21561997


9.

Development of an endothelial-smooth muscle cell coculture model using phenotype-controlled smooth muscle cells.Sakamoto N, Kiuchi T, Sato M.Ann Biomed Eng. 2011 Nov;39(11):2750-8. PMID: 21811870


10.

An in vitro multistep carcinogenesis model for human cervical cancer.Narisawa-Saito M, Yoshimatsu Y, Ohno S, Yugawa T, Egawa N, Fujita M, Hirohashi S, Kiyono T.Cancer Res. 2008 Jul 15;68(14):5699-705. PMID: 18632622


11.

Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model.Sakamoto N, Ohashi T, Sato M.Ann Biomed Eng. 2006 Mar;34(3):408-15. PMID: 16482415


12.

Nitric Oxide Production and Smooth Muscle Cell Phenotype of Endothelial Cell-Smooth Muscle Cell Cocultured Model.Naoya SAKAMOTO, Masaki OI, Toshiro OHASHI and Masaaki SATO.Journal of Biomechanical Science and Engineering, Vol. 1, No. 1 (2006), pp.224-233.


13.

Effect of Shear Stress on Permeability of Vascular Endothelial Monolayer Cocultured with Smooth Muscle Cells.N Sakamoto, T Ohashi, M Sato.JSME international journal. Series C, Mechanical systems, machine elements and manufacturing. 47(4), 992-999, 2004-12-15.

I-PC培养器材包被

1.

TGF-β promotes fetal gene expression and cell migration velocity in a wound repair model of untransformed intestinal epithelial cells.Anzai S, Kawamoto A, Nagata S, Takahashi J, Kawai M, Kuno R, Kobayashi S, Watanabe S, Suzuki K, Shimizu H, Hiraguri Y, Takeoka S, Sugihara HY, Yui S, Oshima S, Watanabe M, Okamoto R.BiochemBiophys Res Commun. 2020 Jan 31. [Epub ahead of print] PMID: 32014254


2.

Mitochondrial Remodeling in Endothelial Cells under Cyclic Stretch is Independent of Drp1 Activation.Megumi Baba, Aya Shinmura, Shigeru Tada, Taku Amo and Akira Tsukamoto.Molecular & Cellular Biomechanics, Vol.16 No.1 2019 ,pp.1-12.


3.

Direct conversion of fibroblasts into urothelial cells that may be recruited to regenerating mucosa of injured urinary bladder.Inoue Y, Kishida T, Kotani SI, Akiyoshi M, Taga H, Seki M, Ukimura O, Mazda O.Sci Rep. 2019 Sep 25;9(1):13850. PMID: 31554870


4.

Optimal stimulation toward the dermal papilla lineage can be promoted by combined use of osteogenic and adipogenic inducers.Kazi T, Niibe I, Nishikawa A, Matsuzaki T.FEBS Open Bio. 2019 Nov 15. doi: 10.1002/2211-5463.12763. [Epub ahead of print]PMID: 31730301


5.

Assays for Modulators of Ryanodine Receptor (RyR)/Ca2+ Release Channel Activity for Drug Discovery for Skeletal Muscle and Heart Diseases.Murayama T, Kurebayashi N.CurrProtocPharmacol. 2019 Dec;87(1):e71. PMID: 31834676


6.

Cyclic Stretch Force Induces Periodontal Ligament Cells to Secrete Exosomes That Suppress IL-1β Production Through the Inhibition of the NF-κB Signaling Pathway in Macrophages.Wang Z, Maruyama K, Sakisaka Y, Suzuki S, Tada H, Suto M, Saito M, Yamada S, Nemoto E.Front Immunol. 2019 Jun 20;10:1310. PMID: 31281309


7.

Low-energy shock waves evoke intracellular Ca2+ increases independently of sonoporation.Takahashi T, Nakagawa K, Tada S, Tsukamoto A.Sci Rep. 2019 Mar 1;9(1):3218. PMID: 30824781


8.

Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits.Zoshima T, Hara S, Yamagishi M, Pastan I, Matsusaka T, Kawano M, Nagata M.Sci Rep. 2019 May 27;9(1):7857. PMID: 31133737


9.

Planar compression of extracellular substrates induces S phase arrest via ATM-independent CHK2 activation.Hayakawa K, Hirata H, Samsonov M, Sokabe M.BiochemBiophys Res Commun. 2018 Dec 2;506(4):983-989. PMID: 30404732


10.

Cyclic Stretch Negatively Regulates IL-1β Secretion Through the Inhibition of NLRP3 Inflammasome Activation by Attenuating the AMP Kinase Pathway.Maruyama K, Sakisaka Y, Suto M, Tada H, Nakamura T, Yamada S, Nemoto E.Front Physiol. 2018 Jun 28;9:802. PMID: 30002631


11.

"All-in-one" in vitro selection of collagen-binding vascular endothelial growth factor.Park SH, Uzawa T, Hattori F, Ogino S, Morimoto N, Tsuneda S, Ito Y.Biomaterials. 2018 Apr;161:270-278. PMID: 29425847


12.

Alkyne-Functionalized Cationic Polysiloxane Polymers Conjugated with Targeting Molecules by Click Reactions for DNA Delivery.Kihara, Yoshihiko; Maeda, Riho; Imaizumi, Azusa; Ichikawa, Tsukasa; Nemoto, Nobukatsu; Ishihara, Tsutomu; Hirano, Nobutaka; Haruki, Mitsuru.Journal of Nanoscience and Nanotechnology, Volume 17, Number 7, July 2017, pp. 5081-5089(9).


13.

Identification of laminin α5 short arm peptides active for endothelial cell attachment and tube formation.Kikkawa Y, Sugawara Y, Harashima N, Fujii S, Ikari K, Kumai J, Katagiri F, Hozumi K, Nomizu M.J Pept Sci. 2017 Jul;23(7-8):666-673. PMID: 28220599


14.

Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C.Hanaki T, Horikoshi Y, Nakaso K, Nakasone M, Kitagawa Y, Amisaki M, Arai Y, Tokuyasu N, Sakamoto T, Honjo S, Saito H, Ikeguchi M, Yamashita K, Ohno S, Matsura T.BiochimBiophys Acta. 2016 Nov;1860(11 Pt A):2404-15. PMID: 27424921


15.

Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model.Kitakaze K, Mizutani Y, Sugiyama E, Tasaki C, Tsuji D, Maita N, Hirokawa T, Asanuma D, Kamiya M, Sato K, Setou M, Urano Y, Togawa T, Otaka A, Sakuraba H, Itoh K.J Clin Invest. 2016 May 2;126(5):1691-703. PMID: 27018595


16.

Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts.Keisuke Kitakaze, Chikako Tasaki, Youichi Tajima, Takatsugu Hirokawa, Daisuke Tsuji, Hitoshi Sakuraba, Kohji Itoh.Biochemistry and Biophysics Reports, Volume 7, September 2016, Pages 157-163.


17.

Engineered bone marrow-derived cell sheets restore structure and function of radiation-injured rat urinary bladders.Imamura T, Ogawa T, Minagawa T, Yokoyama H, Nakazawa M, Nishizawa O, Ishizuka O.Tissue Eng Part A. 2015 May;21(9-10):1600-10. PMID: 25669695


18.

Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.Kobayashi S, Nakamura TY, Wakabayashi S.J Mol Cell Cardiol. 2015 Jul;84:133-42. PMID: 25935310


19.

Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase.Donai K, Kiyono T, Eitsuka T, Guo Y, Kuroda K, Sone H, Isogai E, Fukuda T.J Biotechnol. 2014 Apr 20;176:50-7. PMID: 24589663


20.

Analysis of beat fluctuations and oxygen consumption in cardiomyocytes by scanning electrochemical microscopy.Hirano Y, Kodama M, Shibuya M, Maki Y, Komatsu Y.Anal Biochem. 2014 Feb 15;447:39-42. PMID: 24252541


21.

Establishment of cell lines derived from the genus Macaca through controlled expression of cell cycle regulators.Kuroda K, Kiyono T, Eitsuka T, Isogai H, Takahashi K, Donai K, Isogai E, Fukuda T.J Cell Biochem. 2015 Feb;116(2):205-11. PMID: 25187009


22.

Cyclic tensile force up-regulates BMP-2 expression through MAP kinase and COX-2/PGE2 signaling pathways in human periodontal ligament cells.Suzuki R, Nemoto E, Shimauchi H.Exp Cell Res. 2014 Apr 15;323(1):232-41. PMID: 24561081


23.

Probing the microenvironmental conditions for induction of superficial zone protein expression.Mhanna R, Oztürk E, Schlink P, Zenobi-Wong M.Osteoarthritis Cartilage. 2013 Dec;21(12):1924-32 PMID: 23978656


24.

Induction of albumin expression in HepG2 cells using immobilized simplified recombinant fibronectin protein.Nishida Y, Taniguchi A.In Vitro Cell Dev Biol Anim. 2013 Jun;49(6):400-7. ID: 23649815.


25.

Survival of primary human hepatocytes and death of induced pluripotent stem cells in media lacking glucose and arginine.Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M, Yoshida T.PLoS One. 2013 Aug 14;8(8):e71897. PMID: 23967260


26.

The AP-1 complex regulates intracellular localization of insulin receptor substrate 1, which is required for insulin-like growth factor I-dependent cell proliferation.Yoneyama Y, Matsuo M, Take K, Kabuta T, Chida K, Hakuno F, Takahashi S.Mol Cell Biol. 2013 May;33(10):1991-2003. PMID: 23478262


27.

NIH3T3 cells overexpressing CD98 heavy chain resist early G1 arrest and apoptosis induced by serum starvation.Hara K, Ueda S, Ohno Y, Tanaka T, Yagi H, Okazaki S, Kawahara R, Masayuki T, Enomoto T, Hashimoto Y, Masuko K, Masuko T.Cancer Sci. 2012 Aug;103(8):1460-6. PMID:22497681


28.

N-propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model.Ishii-Osai Y, Yamashita T, Tamura Y, Sato N, Ito A, Honda H, Wakamatsu K, Ito S, Nakayama E, Okura M, Jimbow K.J Dermatol Sci. 2012 Jul;67(1):51-60. PMID:22622238


29.

Activation of macrophage-stimulating protein by human airway trypsin-like protease.Orikawa H, Kawaguchi M, Baba T, Yorita K, Sakoda S, Kataoka H.FEBS Lett. 2012 Feb 3;586(3):217-21. PMID:22245154


30.

Effects of Hypoxia-Inducible Factor-1α Chemical Stabilizer, CoCl(2) and Hypoxia on Gene Expression of CYP3As in Human Fetal Liver Cells.Suzuki E, Matsunaga T, Aonuma A, Sasaki T, Nagata K, Ohmori S.Drug MetabPharmacokinet. 2012;27(4):398-404. PMID: 22277676


31.

Lower expression of HNF4α and PGC1α might impair rifampicin-mediated CYP3A4 induction under conditions where PXR overexpressed in human fetal liver cells.Takezawa T, Matsunaga T, Aikawa K, Nakamura K, Ohmori S.Drug MetabPharmacokinet. 2012;27(4):430-8. PMID:22333269


32.

Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: possible role in mechanical stress-induced hyperpigmentation.Kurita M, Okazaki M, Fujino T, Takushima A, Harii K.BiochemBiophys Res Commun. 2011 May 27;409(1):103-7. PMID: 21557930


33.

The TRPV4 channel is a novel regulator of intracellular Ca2+ in human esophageal epithelial cells.Ueda T, Shikano M, Kamiya T, Joh T, Ugawa S.Am J PhysiolGastrointest Liver Physiol. 2011 Jul;301(1):G138-47. PMID:21493730


34.

Expansion and characterization of adipose tissue-derived stromal cells cultured with low serum medium.Hattori H, Nogami Y, Tanaka T, Amano Y, Fukuda K, Kishimoto S, Kanatani Y, Nakamura S, Takase B, Ishihara M.J Biomed Mater Res B Appl Biomater. 2008 Oct;87(1):229-36. PMID: 18496860


35.

Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes.Hoshiba T, Yamada T, Lu H, Kawazoe N, Tateishi T, Chen G.BiochemBiophys Res Commun. 2008 Oct 3;374(4):688-92. PMID: 18675249


36.

Visible light regulates neurite outgrowth of nerve cells.Higuchi A, Watanabe T, Noguchi Y, Chang Y, Chen WY, Matsuoka Y.Cytotechnology. 2007 Jul;54(3):181-8. PMID: 18832797


37.

Expression of CCN1 (CYR61) in developing, normal, and diseased human kidney.Sawai K, Mukoyama M, Mori K, Kasahara M, Koshikawa M, Yokoi H, Yoshioka T, Ogawa Y, Sugawara A, Nishiyama H, Yamada S, Kuwahara T, Saleem MA, Shiota K, Ogawa O, Miyazato M, Kangawa K, Nakao K.Am J Physiol Renal Physiol. 2007 Oct;293(4):F1363-72. PMID: 17699553


38.

Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone.Makino H, Miyamoto Y, Sawai K, Mori K, Mukoyama M, Nakao K, Yoshimasa Y, Suga S.Diabetes. 2006 Oct;55(10):2747-56. PMID: 17003339


39.

Regulation of neurite outgrowth by intermittent irradiation of visible light.Higuchi A, Watanabe T, Matsubara Y, Matsuoka Y, Hayashi S.J Phys Chem B. 2005 Jun 2;109(21):11033-6. PMID: 16852344


40.

Platelet-rich plasma provides nucleus for mineralization in cultures of partially differentiated periodontal ligament cells.Kawase T, Okuda K, Saito Y, Amizuka N, Suzuki H, Yoshie H.In Vitro Cell Dev Biol Anim. 2005 May-Jun;41(5-6):171-6. PMID: 16153151


41.

Visible light is able to regulate neurite outgrowth.Higuchi A, Kitamura H, Shishimine K, Konishi S, Yoon BO, Hara M.J Biomater Sci Polym Ed. 2003;14(12):1377-88. PMID: 14870941


42.

A simple electroporation method for the introduction of plasmids into cells cultured on coverslips for histochemical examination.TAKATA Kuniaki ; TAKAHASHI Yukiko ; MATSUZAKI Toshiyuki ; TAJIKA Yuki ; SUZUKI Takeshi ; AOKI Takeo ; HAGIWARA Haruo.Act Histochem Cytochem,2003; 36 (4):317-23.


43.

Synergistic effect of BMP-2 and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells.Torii Y, Hitomi K, Tsukagoshi N.Mol Cell Biochem. 1996 Dec 6;165(1):25-9. PMID: 8974078

I-PC支架制备/包被

1.

Effect of Cyclic Stretch on Tissue Maturation in Myoblast-Laden Hydrogel Fibers.Bansai S, Morikura T, Onoe H, Miyata S.Micromachines (Basel). 2019 Jun 15;10(6). pii: E399. PMID: 31208059


2.

Bone Marrow Cells Inhibit BMP-2-Induced Osteoblast Activity in the Marrow Environment.Nguyen HT, Ono M, Oida Y, Hara ES, Komori T, Akiyama K, Nguyen HTT, Aung KT, Pham HT, Tosa I, Takarada T, Matsuo K, Mizoguchi T, Oohashi T, Kuboki T.J Bone Miner Res. 2019 Feb;34(2):327-332. PMID: 30352125


3.

Establishment of perpendicular protrusion of type I collagen on TiO2 nanotube surface as a priming site of peri-implant connective fibers.Nojiri T, Chen CY, Kim DM, Da Silva J, Lee C, Maeno M, McClelland AA, Tse B, Ishikawa-Nagai S, Hatakeyama W, Kondo H, Nagai M.J Nanobiotechnology. 2019 Mar 1;17(1):34. PMID: 30823919


4.

Microdimpled surface atelocollagen maintains primary human hepatocytes in culture and may promote their functionality compared with collagen coat culture.Sato T, Semura K, Fujimoto I.Int J Mol Med. 2019 Sep;44(3):960-972. PMID: 31257473


5.

Three-dimensional bone formation including vascular networks derived from dental pulp stem cells in vitro.Watanabe M, Ohyama A, Ishikawa H, Tanaka A.Hum Cell. 2019 Apr;32(2):114-124. PMID: 30523537


6.

Anisotropic Multi-channel Collagen Gel (MCCG) Guides the Growth Direction of the Neurite-like Processes of PC12 Cells.Koh I, Furusawa K, Haga H.Sci Rep. 2018 Sep 17;8(1):13901. PMID: 30224813


7.

Effects of Three-Dimensional Culture of Mouse Calvaria-Derived Osteoblastic Cells in a Collagen Gel with a Multichannel Structure on the Morphogenesis Behaviors of Engineered Bone TissuesSaki Yahata, Kazuya Furusawa, Kei Nagao, Masahiro Nakajima, and Toshio Fukuda.ACS Biomater. Sci. Eng., 2017, 3 (12), pp 3414–3424.


8.

Bone and Gingival Connective Tissue Responses towards Nanosecond-Pulsed Laser-Treated Titanium ImplantsYugo Fukayo, Tsuyoshi Amemiya, KazutoshiNakaoka, Masayoshi Mizutani, Jun Komotori, Yoshiki Hamada, Tohru HayakawaJournal of Hard Tissue Biology Vol. 25 (2016) No. 2 p. 181-194.


9.

Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. Wan-Gun La, Jinah Jang, Byoung Soo Kim, Min Suk Lee, Dong-Woo Cho and Hee Seok YangRSC Adv., 2016,6, 11546-11553


10.

Application of Multichannel Collagen Gels in Construction of Epithelial Lumen-like Engineered Tissues.Furusawa K, Mizutani T, Machino H, Yahata S, Fukui A, Sasaki N.ACS Biomater. Sci. Eng., 2015, 1 (7), pp 539–548.


11.

Expansion of mouse hematopoietic progenitor cells in three-dimensional cocultures on frozen-thawed stromal cell layers formed within porous scaffolds.Miyoshi H, Morita M, Ohshima N, Sato C.Exp Hematol. 2015 Feb;43(2):115-24. PMID: 25461256


12.

Tissue Response of Surface-Modified Three-Dimensional Titanium Fiber Structure.Amemiya T, Fukayo Y, Nakaoka K, Hamada Y.J Hard Tissue Biol. 23(2), 137-148, 2014-04


13.

The use of gene activated matrix to mediate effective SMAD2 gene silencing against hypertrophic scar.Yin L, Zhao X, Ji S, He C, Wang G, Tang C, Gu S, Yin C.Biomaterials. 2014 Mar;35(8):2488-98. PMID: 24388384


14.

Multiscale analysis of changes in an anisotropic collagen gel structure by culturing osteoblasts.Hanazaki Y, Masumoto J, Sato S, Furusawa K, Fukui A, Sasaki N.ACS Appl Mater Interfaces. 2013 Jul 10;5(13):5937-46. PMID: 23806015


15.

Three-dimensional culture of mouse bone marrow cells on stroma formed within a porous scaffold: influence of scaffold shape and cryopreservation of the stromal layer on expansion of haematopoietic progenitor cells.Miyoshi H, Ohshima N, Sato C.J Tissue Eng Regen Med. 2013 Jan;7(1):32-8. PMID: 22081538


16.

Cartilage tissue engineering with controllable shape using a poly(lactic-co-glycolic acid)/collagen hybrid scaffold.Wenda Dai, Zhenjun Yao, Jian Dong, Naoki Kawazoe, Chi Zhang, Guoping Chen. J BioactCompat Poly. May 2013 vol. 28 no. 3 247-257.


17.

Studies on the formation mechanism and the structure of the anisotropic collagen gel prepared by dialysis-induced anisotropic gelation.Furusawa K, Sato S, Masumoto J, Hanazaki Y, Maki Y, Dobashi T, Yamamoto T, Fukui A, Sasaki N.Biomacromolecules. 2012 Jan 9;13(1):29-39. PMID: 22107030


18.

Development of biodegradable scaffolds based on magnetically guided assembly of magnetic sugar particles.Hu C, Uchida T, Tercero C, Ikeda S, Ooe K, Fukuda T, Arai F, Negoro M, Kwon G.J Biotechnol. 2012 May 31;159(1-2):90-8. PMID:22361001


19.

Application of collagen hydrogel/sponge scaffold facilitates periodontal wound healing in class II furcation defects in beagle dogs.Kosen Y, Miyaji H, Kato A, Sugaya T, Kawanami M.J Periodontal Res. 2012 Oct;47(5):626-34. PMID:22443229


20.

Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity.Lu H, Kawazoe N, Kitajima T, Myoken Y, Tomita M, Umezawa A, Chen G, Ito Y.Biomaterials. 2012 Sep;33(26):6140-6. PMID:22698726


21.

Micropatterned angiogenesis induced by poly(d,l-lactic-co-glycolic acid) mesh-structured scaffolds.Hwan H Oh, Hongxu Lu, Naoki Kawazoe, Guoping Chen. J BioactCompat Pol. March 2012 vol. 27 no. 2 97-106.


22.

Three-dimensional culture of mouse bone marrow cells within a porous polymer scaffold: effects of oxygen concentration and stromal layer on expansion of haematopoietic progenitor cells.Miyoshi H, Murao M, Ohshima N, Tun T.J Tissue Eng Regen Med. 2011 Feb;5(2):112-8. PMID:20653040


23.

Ectopic Bone Induction by BMP-loaded Collagen Scaffold and Bone Marrow Stromal Cell Sheet.Kana INOUE, Hirofumi MIYAJI, Tsutomu SUGAYA and Masamitsu KAWANAMI. J Oral Tissue Eng. Vol. 8 (2010) , No. 1 pp.19-29.


24.

A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering.Kawazoe N, Inoue C, Tateishi T, Chen G.Biotechnol Prog. 2010 May-Jun;26(3):819-26. PMID: 20039440


25.

Efficacy of Tooth Extraction Wound Protection Made of Atelocollagen Sponge (TRE-641): A Pilot Study in DogsMakoto Hirota), Nobuyuki Mizuki), Shinjiro Aoki), Susumu Omura), Kei Watanuki), Tomomichi Ozawa), Toshinori Iwai), Yoshiro Matsui) and Iwai Tohnai. Journal of Hard Tissue Biology Vol. 18 (2009) , No. 2 pp.89-94.


26.

Three-dimensional Cultures of Rat Pancreatic RIN-5F Cells in Porous PLGA-collagen Hybrid Scaffolds.Naoki Kawazoe, Xiaoting Lin, Tetsuya Tateishi, and Guoping Chen.J BioactCompat Pol. January 2009 24: 25-42.


27.

Stimulating effects of fibroblast growth factors on hepatic function of fetal liver cells synergistically with oncostatin M in three-dimensional culture.Minagawa K, Koyama T, Miyoshi H.J BiosciBioeng. 2009 Mar;107(3):307-11. PMID: 19269598


28.

Recombinant human bone morphogenetic protein-2/atelocollagen composite as a new material for ossicular reconstruction.Takeuchi A, Tsujigiwa H, Murakami J, Kawasaki A, Takeda Y, Fukushima K, Rodriguez AP, Nagatsuka H, Yamada M, Nishizaki K.J Biomed Mater Res A. 2009 Apr;89(1):36-45. PMID: 18404714


29.

Multiwalled carbon nanotube coating on titanium.Terada M, Abe S, Akasaka T, Uo M, Kitagawa Y, Watari F.Biomed Mater Eng. 2009;19(1):45-52. PMID: 19458445


30.

Development of biodegradable scaffolds based on patient-specific arterial configuration.Uchida T, Ikeda S, Oura H, Tada M, Nakano T, Fukuda T, Matsuda T, Negoro M, Arai F.J Biotechnol. 2008 Jan 20;133(2):213-8. PMID: 17868940


31.

Evaluation of diaphragmatic hernia repair using PLGA mesh-collagen sponge hybrid scaffold: an experimental study in a rat model.Urita Y, Komuro H, Chen G, Shinya M, Saihara R, Kaneko M.Pediatr Surg Int. 2008 Sep;24(9):1041-5. PMID: 18668247


32.

Establishment of Nanofiber Preparation Technique by Electrospinning.Y Yamashita, F Ko, H Miyake, A HigashiyamaSen'IGakkaishi. 2008 Vol. 64 No. 1 P 24-28.


33.

In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding.Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matsuura N, Sawa Y.J Thorac Cardiovasc Surg. 2008 Oct;136(4):900-7. PMID: 18954628


34.

Effects of oncostatin M on secretion of vascular endothelial growth factor and reconstruction of liver-like structure by fetal liver cells in monolayer and three-dimensional cultures.Ehashi T, Koyama T, Ookawa K, Ohshima N, Miyoshi H.Biomed Mater Res A. 2007 Jul;82(1):73-9. PMID: 17269136


35.

Acceleration of bone formation with BMP2 in frame-reinforced carbonate apatite-collagen sponge scaffolds.Hirata I, Nomura Y, Ito M, Shimazu A, Okazaki M.J Artif Organs. 2007;10(4):212-7. PMID: 18071850


36.

Ultrastructural study on the specific binding of genetically engineered epidermal growth factor to type I collagen fibrils.Kato K, Sato H, Iwata H.Bioconjug Chem. 2007 Nov-Dec;18(6):2137-43. PMID: 17894450


37.

Osteochondral tissue engineering using a PLGA–collagen hybrid mesh.Guoping Chen, Junzo Tanaka, Tetsuya Tateishi.Materials Science and Engineering: C, Volume 26, Issue 1, January 2006, Pages 124-129.


38.

Polymer Scaffolds for Tissue Engineering.G. P. Chen, M. Tanaka, T. Tateishi.Advances in Science and Technology, Vol. 49, pp. 136-141, Oct. 2006.


39.

Preparation of a biphasic scaffold for osteochondral tissue engineering.Guoping Chen, Takashi Sato, Junzo Tanaka, Tetsuya Tateishi.Materials Science and Engineering: C, Volume 26, Issue 1, January 2006, Pages 118-123.


40.

Three-dimensional culture of porcine fetal liver cells for a bioartificial liver.Ehashi T, Ohshima N, Miyoshi H.J Biomed Mater Res A. 2006 Apr;77(1):90-6. PMID: 16355413


41.

Osteoblast Behavior at the Surface of CO3Ap-Collagen Sponges.M. Okazaki, Y. Tieliewuhan, I. Hirata.Key Engineering Materials, Vols. 309-311, pp. 989-992, May. 2006.


42.

Albumin and urea production by hepatocytes cultured on polyurethane foaming membranes coated with extracellular matrix.Akon Higuchi, Masuhiro Satoh, Kenichi Kobayashi, Chong Su Cho, Toshihiro Akaike, Tae Moon Tak, Satsuki Egashira, Yuki Matsuoka, Shizue Hayashi Natori.Journal of Membrane Science, Volume 280, Issues 1–2, 1 September 2006, Pages 983-989.


43.

Detailed consideration of physicochemical properties of CO3apatites as biomaterials in relation to carbonate content using ICP, X-ray diffraction, FT-IR, SEM, and HR-TEM.Yokota R, Hayashi H, Hirata I, Miake Y, Yanagisawa T, Okazaki M.Dent Mater J. 2006 Sep;25(3):597-603. PMID: 17076333


44.

Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.Chen G, Sato T, Ohgushi H, Ushida T, Tateishi T, Tanaka J.Biomaterials. 2005 May;26(15):2559-66. PMID: 15585258


45.

Albumin and urea production by hepatocytes cultured on extracellular matrix proteins-conjugated poly(vinyl alcohol) membranes.Higuchi A, Kurihara M, Kobayashi K, Cho CS, Akaike T, Hara M.J Biomater Sci Polym Ed. 2005;16(7):847-60. PMID: 16128292


46.

Temperature-dependent cell detachment on Pluronic gels.Higuchi A, Yamamoto T, Sugiyama K, Hayashi S, Tak TM, Nakagawa T.Biomacromolecules. 2005 Mar-Apr;6(2):691-6. PMID: 15762631


47.

SEM observation of collagen fibrils secreted from the body surface of osteoblasts on a CO3apatite-collagen sponge.Hirata I, Nomura Y, Tabata H, Miake Y, Yanagisawa T, Okazaki M.Dent Mater J. 2005 Sep;24(3):460-4. PMID: 16279740


48.

Effects of biomaterials on cell adhesion of human periodontal ligament fibroblasts and fibronectin adsorption.Y. Iwamatsu-Kobayashi, D. Nishihara, M. Hirata, K. Kindaichi, M. Komatsu.International Congress Series, Volume 1284, September 2005, Pages 334-335.


49.

Cell adhesion of bone marrow cells, chondrocytes, ligament cells and synovial cells on a PLGA–collagen hybrid mesh.Guoping Chen, Dechang Liu, Norio Maruyama, Hajime Ohgushi, Junzo Tanaka, Tetsuya Tateishi.Materials Science and Engineering: C. Volume 24, Issues 6–8, 1 December 2004, Pages 867–873.


50.

Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells.Guoping Chen, Takashi Sato, MasatakaSakane, Hajime Ohgushi, Takashi Ushida, Junzo Tanaka, Tetsuya Tateishi.Materials Science and Engineering: C. Volume 24, Issues 6–8, 1 December 2004, Pages 861–866.


51.

Regeneration of cartilage tissue by combination of canine chondrocyte and a hybrid mesh scaffold.Guoping Chen, Takashi Sato, Takashi Ushida, Rei Hirochika, NaoyukiOchiai, Tetsuya Tateishi.Materials Science and Engineering: C. Volume 24, Issue 3, 1 April 2004, Pages 373–378.


52.

Characterization of CO3Ap-collagen sponges using X-ray high-resolution microtomography.Itoh M, Shimazu A, Hirata I, Yoshida Y, Shintani H, Okazaki M.Biomaterials. 2004 Jun;25(13):2577-83. PMID: 14751743


53.

Osteoblast proliferation behavior and bone formation on and in CO3apatite-collagen sponges with a porous hydroxyapatite frame.Tieliewuhan Y, Hirata I, Sasaki A, Minagi H, Okazaki M.Dent Mater J. 2004 Sep;23(3):258-64. PMID: 15510851


54.

Custom-shaping system for bone regeneration by seeding marrow stromal cells onto a web-like biodegradable hybrid sheet.Tsuchiya K, Mori T, Chen G, Ushida T, Tateishi T, Matsuno T, Sakamoto M, Umezawa A.Cell Tissue Res. 2004 May;316(2):141-53. PMID: 14999559


55.

Bone augmentation using rhGDF-5-collagen composite.Kuniyasu H, Hirose Y, Ochi M, Yajima A, Sakaguchi K, Murata M, Pohl J.Clin Oral Implants Res. 2003 Aug;14(4):490-9. PMID: 12869012

I-PC凝胶上方培养、其他

1.

In Vitro and In Vivo Comparison of Different Types of Rabbit Mesenchymal Stem Cells for Cartilage Repair.Khalilifar MA, BaghabanEslaminejad MR, Ghasemzadeh M, Hosseini S, Baharvand H.Cell J. 2019 Jul;21(2):150-160. PMID: 30825288

.

2.

Temperature dependence of synchronized beating of cultured neonatal rat heart-cell networks with increasing age measured by multi-electrode arrays.Uchida T, Kitora R, Gohara K (2018). Trends Med 18, Volume 18(4): 1-10.


3.

Spontaneous acquisition of infinite proliferative capacity by a rabbit corneal endothelial cell line with maintenance of phenotypic and physiological characteristics.Kageyama T, Hayashi R, Hara S, Yoshikawa K, Ishikawa Y, Yamato M, Nishida K.J Tissue Eng Regen Med. 2017 Apr;11(4):1057-1064. PMID: 25758102


4.

Electrochemical Sensing of Casein Based on the Interaction between Its Phosphate Groups and a Ruthenium(III) Complex.Inaba I1, Kuramitz H, Sugawara K.Anal Sci. 2016;32(8):853-9. PMID: 27506711


5.

Biochemical Mechanism of Titanium Fixation into Living Bone: Acid Soluble Phosphoproteins in Bone Binds with Titanium and Induced Endochondral Ossification in vivo.Yoshinori KUBOKI, Kimitoshi YAGAMI, Michiko TERADA-NAKAISHI, Toshitake FURUSAWA, Yasuko NAKAOKI, Masaaki KURASAKI.J. Oral Tissue Engin. 2017;15(2):109-118.


6.

Time of flight-secondary ion mass spectrometry analysis of protein adsorption on a polyvinylidene difluoride surface modified by ion irradiation.Okuji S, Kitazawa H, Takeda Y.Colloids Surf B Biointerfaces. 2016 Dec 1;148:249-254. PMID: 27616065


7.

Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis.Riau AK1,2, Mondal D2, Yam GH2, Setiawan M2, Liedberg B1,3, Venkatraman SS1, Mehta JS1,2,4,5.ACS Appl Mater Interfaces. 2015 Oct 7;7(39):21690-702. PMID: 26389670


8.

Synergistic effect of ascorbic acid and collagen addition on the increase in type 2 collagen accumulation in cartilage-like MSC sheet.Sato Y, Mera H, Takahashi D, Majima T, Iwasaki N, Wakitani S, Takagi M.Cytotechnology. 2017 Jun;69(3):405-416. PMID: 26572654


9.

Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.Zorzi GK, Párraga JE, Seijo B, Sanchez A.Colloids Surf B Biointerfaces. 2015 Aug 12;135:533-541. PMID: 26298086


10.

Protective Effects of Soluble Collagen during Ultraviolet-A Crosslinking on Enzyme-Mediated Corneal Ectatic Models.Wang X, Huang Y, Jastaneiah S, Majumdar S, Kang JU, Yiu SC, Stark W, Elisseeff JH.PLoS One. 2015 Sep 1;10(9):e0136999. PMID: 26325407


11.

Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.Sugawara K, Okusawa M, Takano Y, Kadoya T.Anal Sci. 2014;30(6):649-55. PMID: 24919669


12.

The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures.Assal Y, Mie M, Kobatake E.Biomaterials. 2013 Apr;34(13):3315-23. PMID: 23388150


13.

Hollow Fiber Module Applied for Effective Proliferation and Harvest of Cultured Chondrocytes.Y. Mori, M. Watanabe, S. Nakagawa, Y. Asawa, S. Nishizawa, K. Okubo, H. Saijo, S. Nagata, Y. Fujihara, T. Takato and K. Hoshi,Materials Sciences and Applications, Vol. 4 No. 8A, 2013, pp. 62-67.


14.

Effects of hyaluronan oligosaccharides on apoptosis ofhuman gingival fibroblasts.Tanne, Y. ,Tanimoto, K. , Okuma, S. , Kunimatsu, R. , Hirose, N. , Mitsuyoshi, T. and Tanne, K.Open Journal of Stomatology (2013), 3, 19-24.


15.

The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage.Tanaka Y, Yamaoka H, Nishizawa S, Nagata S, Ogasawara T, Asawa Y, Fujihara Y, Takato T, Hoshi K.Biomaterials. 2010 Jun;31(16):4506-16. PMID: 20206380


16.

The application of atelocollagen gel in combination with porous scaffolds for cartilage tissue engineering and its suitable conditions.Yamaoka H, Tanaka Y, Nishizawa S, Asawa Y, Takato T, Hoshi K.J Biomed Mater Res A. 2010 Apr;93(1):123-32. PMID: 19536835


17.

Gastric submucosa as the safer and repeatable site for hepatocyte transplantation.Kakihara N, Takeshita K, Naka S, Ishibashi H.Transplant Proc. 2009 Jan-Feb;41(1):425-8. PMID: 19249571


18.

Experimental evaluation of a new antithrombogenic stent using ion beam surface modification.Sugita Y, Suzuki Y, Someya K, Ogawa A, Furuhata H, Miyoshi S, Motomura T, Miyamoto H, Igo S, Nosé Y.Artif Organs. 2009 Jun;33(6):456-63. PMID: 19473141


19.

Construction of multi-functional extracellular matrix proteins that promote tube formation of endothelial cells.Nakamura M, Mie M, Mihara H, Nakamura M, Kobatake E.Biomaterials. 2008 Jul;29(20):2977-86. PMID: 18423582


20.

Effect of interleukins response to ECM-induced acquisition of drug resistance in MCF-7 cells.Ohbayashi M, Yasuda M, Kawakami I, Kohyama N, Kobayashi Y, Yamamoto T.Exp Oncol. 2008 Dec;30(4):276-82. PMID: 19112424


21.

Feasibility of using a human nucleus pulposus cell line as a cell source in cell transplantation therapy for intervertebral disc degeneration.Iwashina T, Mochida J, Sakai D, Yamamoto Y, Miyazaki T, Ando K, Hotta T.Spine (Phila Pa 1976). 2006 May 15;31(11):1177-86. PMID: 16688029


22.

Effect of DNA structure on the formation of collagen-DNA complex.Kaya M, Toyama Y, Kubota K, Nodasaka Y, Ochiai M, Nomizu M, Nishi N.Int J Biol Macromol. 2005 Mar;35(1-2):39-46. PMID: 15769514


23.

Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration.Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T.Spine (Phila Pa 1976). 2005 Nov 1;30(21):2379-87. PMID: 16261113


24.

Novel bone graft model using bead-cell sheets composed of tricalcium phosphate beads and bone marrow cells.ShunsukeMiyauchi, Katsuko S. Furukawa, Yoshikazu Umezu, Yasuyuki Ozeki, Takashi Ushida, Tetsuya Tateishi.Materials Science and Engineering: C. Volume 24, Issues 6–8, 1 December 2004, Pages 875–879.


25.

Effect of poly DL-lactic-co-glycolic acid mesh on a three-dimensional culture of chondrocytes.Takagi M, Fukui Y, Wakitani S, Yoshida T.J BiosciBioeng. 2004;98(6):477-81. PMID: 16233739


26.

Effects of basic fibroblast growth factor on the repair of large osteochondral defects of articular cartilage in rabbits: dose-response effects and long-term outcomes.Tanaka H, Mizokami H, Shiigi E, Murata H, Ogasa H, Mine T, Kawai S.Tissue Eng. 2004 Mar-Apr;10(3-4):633-41. PMID: 15165479


27.

Bioartificial liver support system using porcine hepatocytes entrapped in a three-dimensional hollow fiber module with collagen gel: An evaluation in the swine acute liver failure model.Naka S, Takeshita K, Yamamoto T, Tani T, Kodama M.Artif Organs. 1999 Sep;23(9):822-8. PMID: 10491029


28.

Effects of collagen matrix on proliferation and differentiation of vascular smooth muscle cells in vitro.Sakata N, Kawamura K, Takebayashi S.Exp Mol Pathol. 1990 Apr;52(2):179-91. PMID: 2332035


29.

In vitro maturation of collagen fibrils modulates spreading, DNA synthesis, and collagenolysis of epidermal cells and fibroblasts.Nishikawa A, Taira T, Yoshizato K.Exp Cell Res. 1987 Jul;171(1):164-77. PMID: 3040448

I-AC三维培养(3D培养)

1.

Two-photon microscopic observation of cell-production dynamics in the developing mammalian neocortex in utero.Kawasoe R, Shinoda T, Hattori Y, Nakagawa M, Pham TQ, Tanaka Y, Sagou K, Saito K, Katsuki S, Kotani T, Sano A, Fujimori T, Miyata T.Dev Growth Differ. 2020 Feb;62(2):118-128. PMID: 31943159


2.

Rapid Photoinduced Single Cell Detachment from Gold Nanoparticle-Embedded Collagen Gels with Low Denaturation Temperature.Kojima C, Nishio M, Nakajima Y, Kawano T, Takatsuka K, Matsumoto A.Polymers (Basel). 2020 Jan 15;12(1). PMID: 31952267


3.

Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling.Yoshino D, Funamoto K, Sato K, Kenry, Sato M, Lim CT.Commun Biol. 2020 Apr 2;3(1):152. PMID: 32242084


4.

Torula yeast (Candida utilis)‐derived glucosylceramide contributes to dermal elasticity in vitro.Fukunaga, S, Wada, S, Yamashita, M, et al.J Food Biochem. 2019;e12847.


5.

Nω -(Carboxymethyl)arginine Is One of the Dominant Advanced Glycation End Products in Glycated Collagens and Mouse Tissues.Kinoshita S, Mera K, Ichikawa H, Shimasaki S, Nagai M, Taga Y, Iijima K, Hattori S, Fujiwara Y, Shirakawa JI, Nagai R.Oxid Med Cell Longev. 2019 Sep 10;2019:9073451. PMID: 31583049


6.

Effect of Mechanical Compression on Invasion Process of Malignant Melanoma Using In Vitro Three-Dimensional Cell Culture Device.Morikura T, Miyata S.Micromachines (Basel). 2019 Sep 30;10(10). PMID: 31575066


7.

Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation.Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, Okiji T.Sci Rep. 2019 Apr 1;9(1):5430. PMID: 30931957


8.

Utility of the Teslar Facial Massager for Skin Elasticity and the Mechanism of its Effects. Kazuhisa Maeda, Sakura Koizumi, Taiga Sano, Ayano Yoshimura, HarukaKiriyama and Seina Mimura.Cosmetics 2018, 5(3), 49.


9.

Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition.Nagai N, Ohguchi H, Nakaki R, Matsumura Y, Kanki Y, Sakai J, Aburatani H, Minami T.PLoS Genet. 2018 Nov 30;14(11):e1007826. PMID: 30500808


10.

Role of extrinsic mechanical force in the development of the RA-I tactile mechanoreceptor.Pham TQ, Kawaue T, Hoshi T, Tanaka Y, Miyata T, Sano A.Sci Rep. 2018 Jul 23;8(1):11085. PMID: 30038295


11.

Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter.Shinoda T, Nagasaka A, Inoue Y, Higuchi R, Minami Y, Kato K, Suzuki M, Kondo T, Kawaue T, Saito K, Ueno N, Fukazawa Y, Nagayama M, Miura T, Adachi T, Miyata T.PLoS Biol. 2018 Apr 20;16(4):e2004426. PMID: 29677184


12.

Differentiating cells mechanically limit the interkinetic nuclear migration of progenitor cells to secure apical cytogenesis.Watanabe Y, Kawaue T, Miyata T.Development. 2018 Jul 17;145(14). PMID: 29945866


13.

Both triazolyl ester of ketorolac (15K) and YM155 inhibit the embryonic angiogenesis in ovo (fertilized eggs) via their common PAK1-survivin/VEGF signaling pathway.Ahn MR, Bae JY, Jeong DH, Takahashi H, Uto Y, Maruta H.Drug DiscovTher. 2017;11(6):300-306. PMID: 29332887


14.

Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-β1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt.Giménez A, Duch P, Puig M, Gabasa M, Xaubet A, Alcaraz J.

Int J Mol Sci. 2017 Nov 16;18(11). PMID: 29144435


15.

Defined three-dimensional microenvironments boost induction of pluripotency.Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP.Nat Mater. 2016 Mar;15(3):344-52. PMID: 26752655


16.

ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.Lee MH, Goralczyk AG, Kriszt R, Ang XM, Badowski C, Li Y, Summers SA, Toh SA, Yassin MS, Shabbir A, Sheppard A, Raghunath M.Sci Rep. 2016 Feb 17;6:21173. PMID: 26883894


17.

Dynamics of Tissue-Induced Alignment of Fibrous Extracellular Matrix.Piotrowski-Daspit AS, Nerger BA, Wolf AE, Sundaresan S, Nelson CM.Biophys J. 2017 Aug 8;113(3):702-713. PMID: 28793224


18.

Increased AGE-RAGE ratio in idiopathic pulmonary fibrosis.Machahua C, Montes-Worboys A, Llatjos R, Escobar I, Dorca J, Molina-Molina M, Vicens-Zygmunt V.Respir Res. 2016 Nov 5;17(1):144.PMID: 27816054


19.

Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels.Nagasaka A, Shinoda T, Kawaue T, Suzuki M, Nagayama K, Matsumoto T, Ueno N, Kawaguchi A and Miyata T.(2016) Front. Cell Dev. Biol. 4:139.


20.

Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin.Piotrowski-Daspit AS, Tien J, Nelson CM.Integr Biol (Camb). 2016 Mar 14;8(3):319-31. PMID: 26853861


21.

Mammary Branching Morphogenesis Requires Reciprocal Signaling by Heparanase and MMP-14.Gomes AM, Bhat R, Correia AL, Mott JD, Ilan N, Vlodavsky I, Pavão MS, Bissell M.J Cell Biochem. 2015 Aug;116(8):1668-79. PMID: 25735873


22.

Fibroblast viability and phenotypic changes within glycated stiffened three-dimensional collagen matrices.Vicens-Zygmunt V, Estany S, Colom A, Montes-Worboys A, Machahua C, Sanabria AJ, Llatjos R, Escobar I, Manresa F, Dorca J, Navajas D, Alcaraz J, Molina-Molina M.Respir Res. 2015 Jul 1;16:82. PMID: 26126411


23.

Three-dimensional traction force microscopy of engineered epithelial tissues.Piotrowski AS, Varner VD, Gjorevski N, Nelson CM.Methods Mol Biol. 2015;1189:191-206. PMID: 25245695


24.

Response of Human Skin Fibroblasts to Mechanical Stretch in Wound Healing Process Analyzed Using a Three-Dimensional Culture Model. Kaori Shikano, Keisuke Chiba, Shogo Miyata.Advanced Biomedical Engineering. Vol. 4 (2015) p. 170-178.


25.

Oxygen diffusion and consumption in extracellular matrix gels: Implications for designing three-dimensional cultures.Colom A, Galgoczy R, Almendros I, Xaubet A, Farré R, Alcaraz J.J Biomed Mater Res A. 2014 Aug;102(8):2776-84. PMID: 24027235


26.

A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects.Galgoczy R, Pastor I, Colom A, Giménez A, Mas F, Alcaraz J.Colloids Surf B Biointerfaces. 2014 Aug 1;120:200-7. PMID: 24916283


27.

A novel three-dimensional cell culture method to analyze epidermal cell differentiation in vitro.Okugawa Y, Hirai Y.Methods Mol Biol. 2014;1195:183-90. PMID: 24281867


28.

Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions.Pampaloni F, Berge U, Marmaras A, Horvath P, Kroschewski R, Stelzer EH. Integr Biol (Camb). 2014 Oct;6(10):988-98. PMID: 25183478


29.

Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components.Tashiro K, Shishido M, Fujimoto K, Hirota Y, Yo K, Gomi T, Tanaka Y.BiochemBiophys Res Commun. 2014 Jan 3;443(1):167-72. PMID: 24287182


30.

The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90β.Correia AL, Mori H, Chen EI, Schmitt FC, Bissell MJ.Genes Dev. 2013 Apr 1;27(7):805-17. PMID: 23592797


31.

Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1.Mori H, Lo AT, Inman JL, Alcaraz J, Ghajar CM, Mott JD, Nelson CM, Chen CS, Zhang H, Bascom JL, Seiki M, Bissell MJ.Development. 2013 Jan;140(2):343-52. PMID: 23250208


32.

Extracellular epimorphin modulates epidermal differentiation signals mediated by epidermal growth factor receptor.Okugawa Y, Hirai Y.J Dermatol Sci. 2013 Mar;69(3):236-42. PMID: 23219092


33.

PI3K regulates branch initiation and extension of cultured mammary epithelia via Akt and Rac1 respectively.Zhu W, Nelson CM.Dev Biol. 2013 Jul 15;379(2):235-45. PMID: 23665174


34.

Knockdown of electron transfer flavoprotein β subunit reduced TGF-β-induced α-SMA mRNA expression but not COL1A1 in fibroblast-populated three-dimensional collagen gel cultures.Hirokawa S, Shimanuki T, Kitajima H, Nishimori Y, Shimosaka M.J Dermatol Sci. 2012 Dec;68(3):179-86. PMID: 23068445


35.

Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.Tien J, Truslow JG, Nelson CM.PLoS One. 2012;7(9):e45191. PMID: 23028839


36.

Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening.Alcaraz J, Mori H, Ghajar CM, Brownfield D, Galgoczy R, Bissell MJ.Integr Biol (Camb). 2011 Dec;3(12):1153-66. PMID:21993836


37.

The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis.Andersen K, Mori H, Fata J, Bascom J, Oyjord T, Mælandsmo GM, Bissell M.Dev Biol. 2011 Apr 15;352(2):181-90. PMID: 21195708


38.

Role of tumour necrosis factor-α (TNFα) in the functional properties of hyalocytes.Hata Y, Nakao S, Kohno R, Oba K, Kita T, Miura M, Sassa Y, Schering A, Ishibashi T.Br J Ophthalmol. 2011 Feb;95(2):261-5. PMID: 21030411 .


39.

Identification of ETFB as a candidate protein that participates in the mechanoregulation of fibroblast cell number in collagen gel culture.Hirokawa S, Shimanuki T, Kitajima H, Nishimori Y, Shimosaka M.J Dermatol Sci. 2011 Nov;64(2):119-26. PMID: 21903359


40.

Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging.Kawakami M, Umeda M, Nakagata N, Takeo T, Yamamura K.BMC Dev Biol. 2011 Nov 9;11:68. PMID: 22070366


41.

Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis.Lee K, Gjorevski N, Boghaert E, Radisky DC, Nelson CM.EMBO J. 2011 May 24;30(13):2662-74. PMID: 21610693


42.

Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture.Pavlovich AL, Boghaert E, Nelson CM.Exp Cell Res. 2011 Aug 1;317(13):1872-84. PMID: 21459084


43.

Endogenous patterns of mechanical stress are required for branching morphogenesis.Gjorevski N, Nelson CM.Integr Biol (Camb). 2010 Sep;2(9):424-34. PMID: 20717570


44.

Epimorphin-derived peptide antagonists remedy epidermal parakeratosis triggered by unsaturated fatty acid.Okugawa Y, Bascom JJ, Hirai Y.J Dermatol Sci. 2010 Sep;59(3):176-83. PMID: 20688483


45.

Madin-Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3-D cultures.Pampaloni F, Stelzer EH, Leicht S, Marcello M.Proteomics. 2010 Oct;10(19):3394-413. PMID: 20718008


46.

Adipose stroma induces branching morphogenesis of engineered epithelial tubules.Pavlovich AL, Manivannan S, Nelson CM.Tissue Eng Part A. 2010 Dec;16(12):3719-26. PMID: 20649458


47.

Neurotrophic effect of gonadotropin-releasing hormone on neurite extension and neuronal migration of embryonic gonadotropin-releasing hormone neurons in chick olfactory nerve bundle culture.Kanaho Y, Enomoto M, Endo D, Maehiro S, Park MK, Murakami S.J Neurosci Res. 2009 Aug 1;87(10):2237-44. PMID: 19301422


48.

Potent inhibition of cicatricial contraction in proliferative vitreoretinal diseases by statins.Kawahara S, Hata Y, Kita T, Arita R, Miura M, Nakao S, Mochizuki Y, Enaida H, Kagimoto T, Goto Y, Hafezi-Moghadam A, Ishibashi T.Diabetes. 2008 Oct;57(10):2784-93. PMID: 18599521. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17504-9. PMID: 18952846


49.

Hic-5, an adaptor protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo.Kim-Kaneyama JR, Wachi N, Sata M, Enomoto S, Fukabori K, Koh K, Shibanuma M, Nose K.

BiochemBiophys Res Commun. 2008 Nov 28;376(4):682-7. PMID: 18812162


50.

Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target.Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, Mochizuki Y, Enaida H, Goto Y, Shimokawa H, Hafezi-Moghadam A, Ishibashi T.Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17504-9. PMID: 18952846


51.

Overexpression of extracellular epimorphin leads to impaired epidermal differentiation in HaCaT keratinocytes.Okugawa Y, Hirai Y.J Invest Dermatol. 2008 Aug;128(8):1884-93. PMID: 18273050


52.

Non-classical export of epimorphin and its adhesion to alphav-integrin in regulation of epithelial morphogenesis.Hirai Y, Nelson CM, Yamazaki K, Takebe K, Przybylo J, Madden B, Radisky DC.J Cell Sci. 2007 Jun 15;120(Pt 12):2032-43. PMID: 17535848


53.

Functional characteristics of connective tissue growth factor on vitreoretinal cells.Kita T, Hata Y, Miura M, Kawahara S, Nakao S, Ishibashi T.Diabetes. 2007 May;56(5):1421-8. PMID: 17303801


54.

Critical role of the Rho-kinase pathway in TGF-beta2-dependent collagen gel contraction by retinal pigment epithelial cells.Miura M, Hata Y, Hirayama K, Kita T, Noda Y, Fujisawa K, Shimokawa H, Ishibashi T.Exp Eye Res. 2006 May;82(5):849-59. PMID: 16310190


55.

Lgl mediates apical domain disassembly by suppressing the PAR-3-aPKC-PAR-6 complex to orient apical membrane polarity.Yamanaka T, Horikoshi Y, Izumi N, Suzuki A, Mizuno K, Ohno S.J Cell Sci. 2006 May 15;119(Pt 10):2107-18. PMID: 16638806


56.

The effect of hyaluronic acid with different molecular weights on collagen crosslink synthesis in cultured chondrocytes embedded in collagen gels.Abe M, Takahashi M, Nagano A.J Biomed Mater Res A. 2005 Nov 1;75(2):494-9. PMID: 16092114


57.

Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: roles of Contactin and notochord-derived chondroitin sulfate proteoglycans.Fujita N, Nagata S.Dev Growth Differ. 2005 Sep;47(7):445-56. PMID: 16179071


58.

Leukemia inhibitory factor induces multi-lineage differentiation of adult stem-like cells in kidney via kidney-specific cadherin 16.Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, Shibata K, KohikeH, Komori T, Hayashi M, Nakaki T, Nakauchi H, Okano H, Fujita T.BiochemBiophys Res Commun. 2005 Mar 4;328(1):288-91. PMID: 15670782


59.

Extraocular dorsal signal affects the developmental fate of the optic vesicle and patterns the optic neuroepithelium.Kagiyama Y, Gotouda N, Sakagami K, Yasuda K, Mochii M, Araki M.Dev Growth Differ. 2005 Oct;47(8):523-36. PMID: 16287484


60.

Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo.Kim-Kaneyama JR, Suzuki W, Ichikawa K, Ohki T, Kohno Y, Sata M, Nose K, Shibanuma M.J Cell Sci. 2005 Mar 1;118(Pt 5):937-49. PMID: 15713747


61.

Subculture of chondrocytes on a collagen type I-coated substrate with suppressed cellular dedifferentiation.Kino-Oka M, Yashiki S, Ota Y, Mushiaki Y, Sugawara K, Yamamoto T, Takezawa T, Taya M.Tissue Eng. 2005 Mar-Apr;11(3-4):597-608. PMID: 15869436


62.

Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector.Yokoo N, Saito T, Uesugi M, Kobayashi N, Xin KQ, Okuda K, Mizukami H, Ozawa K, Koshino T.Arthritis Rheum. 2005 Jan;52(1):164-70. PMID: 15641065


63.

Activin A augments vascular endothelial growth factor activity in promoting branching tubulogenesis in hepatic sinusoidal endothelial cells.Endo D, Kogure K, Hasegawa Y, Maku-uchi M, Kojima I.J Hepatol. 2004 Mar;40(3):399-404. PMID: 15123352


64.

The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes.Hirayama K, Hata Y, Noda Y, Miura M, Yamanaka I, Shimokawa H, Ishibashi T.Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3896-903. PMID: 15505034


65.

P311 accelerates nerve regeneration of the axotomized facial nerve.Fujitani M, Yamagishi S, Che YH, Hata K, Kubo T, Ino H, Tohyama M, Yamashita T.J Neurochem. 2004 Nov;91(3):737-44. PMID: 15485502


66.

Vascular endothelial growth factor- and thrombin-induced termination factor, Down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis.Minami T, Horiuchi K, Miura M, Abid MR, Takabe W, Noguchi N, Kohro T, Ge X, Aburatani H, Hamakubo T, Kodama T, Aird WC.J Biol Chem. 2004 Nov 26;279(48):50537-54. PMID: 15448146


67.

Odontoblasts induced from mesenchymal cells of murine dental papillae in three-dimensional cell culture.Kikuchi H, Suzuki K, Sakai N, Yamada S.Cell Tissue Res. 2004 Aug;317(2):173-85. PMID: 15221440


68.

Vascular endothelial growth factor- and thrombin-induced termination factor, Down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis.Minami T, Horiuchi K, Miura M, Abid MR, Takabe W, Noguchi N, Kohro T, Ge X, Aburatani H, Hamakubo T, Kodama T, Aird WC.J Biol Chem. 2004 Nov 26;279(48):50537-54. PMID: 15448146


69.

Interaction between hex and GATA transcription factors in vascular endothelial cells inhibits flk-1/KDR-mediated vascular endothelial growth factor signaling.Minami T, Murakami T, Horiuchi K, Miura M, Noguchi T, Miyazaki J, Hamakubo T, Aird WC, Kodama T.J Biol Chem. 2004 May 14;279(20):20626-35. PMID: 15016828


70.

Crosslinking of collagen gels by transglutaminase.Orban JM, Wilson LB, Kofroth JA, El-Kurdi MS, Maul TM, Vorp DA.J Biomed Mater Res A. 2004 Mar 15;68(4):756-62. PMID: 14986330


71.

Heterologous desensitization of T cell functions by CCR5 and CXCR4 ligands: inhibition of cellular signaling, adhesion and chemotaxis.Hecht I, Cahalon L, Hershkoviz R, Lahat A, Franitza S, Lider O.Int Immunol. 2003 Jan;15(1):29-38. PMID: 12502723


72.

Collapsin response mediator protein-2 accelerates axon regeneration of nerve-injured motor neurons of rat.Suzuki Y, Nakagomi S, Namikawa K, Kiryu-Seo S, Inagaki N, Kaibuchi K, Aizawa H, Kikuchi K, Kiyama H.J Neurochem. 2003 Aug;86(4):1042-50. PMID: 12887701


73.

Effects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultured in collagen I gels.Chaipinyo K, Oakes BW, van Damme MP.J Orthop Res. 2002 Sep;20(5):1070-8. PMID: 12382975


74.

Growth, antrum formation, and estradiol production of bovine preantral follicles cultured in a serum-free medium.Itoh T, Kacchi M, Abe H, Sendai Y, Hoshi H.Biol Reprod. 2002 Oct;67(4):1099-105. PMID: 12297524


75.

Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding.Kondo T, Ohta T, Igura K, Hara Y, Kaji K.Cancer Lett. 2002 Jun 28;180(2):139-44. PMID: 12175544


76.

beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium.Weaver VM, Lelièvre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F, Werb Z, Bissell MJ.Cancer Cell. 2002 Sep;2(3):205-16. PMID: 12242153


77.

Resveratrol and quercetin inhibit angiogenesis in vitro.Igura K, Ohta T, Kuroda Y, Kaji K.Cancer Lett. 2001 Sep 28;171(1):11-6. PMID: 11485823


78.

The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells.Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ.Development. 2001 Aug;128(16):3117-31. PMID: 11688561


79.

Concept for organ engineering: a reconstruction method of rat liver for in vitro culture.Takezawa T, Inoue M, Aoki S, Sekiguchi M, Wada K, Anazawa H, Hanai N.Tissue Eng. 2000 Dec;6(6):641-50. PMID: 11103085


80.

The small GTP-binding protein TC10 promotes nerve elongation in neuronal cells, and its expression is induced during nerve regeneration in rats.Tanabe K, Tachibana T, Yamashita T, Che YH, Yoneda Y, Ochi T, Tohyama M, Yoshikawa H, Kiyama H.J Neurosci. 2000 Jun 1;20(11):4138-44. PMID: 10818149


81.

Epimorphin functions as a key morphoregulator for mammary epithelial cells.Hirai Y, Lochter A, Galosy S, Koshida S, Niwa S, Bissell MJ.J Cell Biol. 1998 Jan 12;140(1):159-69. PMID: 9425164


82.

Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus.Lelièvre SA, Weaver VM, Nickerson JA, Larabell CA, Bhaumik A, Petersen OW, Bissell MJ.Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14711-6. PMID: 9843954


83.

Effects of basic fibroblast growth factor on proliferation and phenotype expression of chondrocytes embedded in collagen gel.Matsusaki M, Ochi M, Uchio Y, Shu N, Kurioka H, Kawasaki K, Adachi N.Gen Pharmacol. 1998 Nov;31(5):759-64. PMID: 9809475


84.

Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma.Hirota H, Kiyama H, Kishimoto T, Taga T.J Exp Med. 1996 Jun 1;183(6):2627-34. PMID: 8676083


85.

Immortalised mouse submandibular epithelial cell lines retain polarised structural and functional properties.Laoide BM, Courty Y, Gastinne I, Thibaut C, Kellermann O, Rougeon F.J Cell Sci. 1996 Dec;109 ( Pt 12):2789-800. PMID: 9013327


86.

Inhibitory effect of isoliquiritin, a compound in licorice root, on angiogenesis in vivo and tube formation in vitro.Kobayashi S, Miyamoto T, Kimura I, Kimura M.Biol Pharm Bull. 1995 Oct;18(10):1382-6. PMID: 8593441

I-AC共培养、机械刺激培养                                       

1.

Cancer cell migration on elongate protrusions of fibroblasts in collagen matrix.Miyazaki K, Oyanagi J, Hoshino D, Togo S, Kumagai H, Miyagi Y.Sci Rep. 2019 Jan 22;9(1):292. PMID: 30670761


2.

IGF-1R deficiency in human keratinocytes disrupts epidermal homeostasis and stem cell maintenance.Muraguchi T, Nanba D, Nishimura EK, Tashiro T.J Dermatol Sci. 2019 May;94(2):298-305. PMID: 31122679


3.

Transfection of T-Box Transcription Factor BRACHYURY and SOX2 Synergistically Promote Self-Renewal and Invasive Phenotype in Oral Cancer Cells.Akimoto N, Nakamura K, Hijioka H, Kume K, Matsumura Y, Sugiura T.Int J Mol Sci. 2018 Nov 16;19(11). PMID: 30453543


4.

Type IV collagen aggregates promote keratinocyte proliferation and formation of epidermal layer in human skin equivalents.Matsuura-Hachiya Y, Arai KY, Muraguchi T, Sasaki T, Nishiyama T. Exp Dermatol. 2018 May;27(5):443-448. PMID: 28266764


5.

Perfusable and stretchable 3D culture system for skin-equivalent.Mori N, Morimoto Y, Takeuchi S.Biofabrication. 2018 Nov 15;11(1):011001. PMID: 30431022


6.

Fluid shear stress suppresses ICAM-1-mediated transendothelial migration of leukocytes in coculture model.Sakamoto N, Ueki Y, Oi M, Kiuchi T, Sato M.BiochemBiophys Res Commun. 2018 Jul 20;502(3):403-408. PMID: 29852173


7.

Skin integrated with perfusable vascular channels on a chip.Mori N, Morimoto Y, Takeuchi S.Biomaterials. 2016 Nov 27;116:48-56. PMID: 27914266


8.

Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels.Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y.Cytotechnology. 2015 Jan;67(1):19-26. PMID: 24287612


9.

Stimulatory effect of fibroblast-derived prostaglandin E2 on keratinocyte stratification in the skin equivalent.Arai KY, Fujioka A, Okamura R, Nishiyama T.Wound Repair Regen. 2014 Nov;22(6):701-11. PMID: 25224163


10.

Repeated folding stress-induced morphological changes in the dermal equivalent.Arai KY, Sugimoto M, Ito K, Ogura Y, Akutsu N, Amano S, Adachi E, Nishiyama T.Skin Res Technol. 2014 Nov;20(4):399-408. PMID: 24506301


11.

Construction of collagen gel scaffolds for mechanical stress analysis.Hara M, Nakashima M, Fujii T, Uehara K, Yokono C, Hashizume R, Nomura Y.BiosciBiotechnolBiochem. 2014 Mar;78(3):458-61. PMID: 25036833


12.

Autocrine galectin-1 promotes collective cell migration of squamous cell carcinoma cells through up-regulation of distinct integrins.Rizqiawan A, Tobiume K, Okui G, Yamamoto K, Shigeishi H, Ono S, Shimasue H, Takechi M, Higashikawa K, Kamata N.BiochemBiophys Res Commun. 2013 Nov 29;441(4):904-10. PMID: 24211210


13.

Identification of a novel subpopulation of tumor-initiating cells from gemcitabine-resistant pancreatic ductal adenocarcinoma patients.Shimizu K, Chiba S, Hori Y.PLoS One. 2013 Nov 21;8(11):e81283. PMID: 24278411


14.

IL-1beta stimulates activin betaA mRNA expression in human skin fibroblasts through the MAPK pathways, the nuclear factor-kappaB pathway, and prostaglandin E2.Arai KY, Ono M, Kudo C, Fujioka A, Okamura R, Nomura Y, Nishiyama T.Endocrinology. 2011 Oct;152(10):3779-90. PMID: 21828177


15.

Netrin 1 provides a chemoattractive cue for the ventral migration of GnRH neurons in the chick forebrain.Murakami S, Ohki-Hamazaki H, Watanabe K, Ikenaka K, Ono K.J Comp Neurol. 2010 Jun 1;518(11):2019-34. PMID: 20394056


16.

DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma.Higashikawa K, Yoneda S, Tobiume K, Saitoh M, Taki M, Mitani Y, Shigeishi H, Ono S, Kamata N.Int J Cancer. 2009 Jun 15;124(12):2837-44. PMID: 19267405


17.

Critical role for GATA3 in mediating Tie2 expression and function in large vessel endothelial cells.Song H, Suehiro J, Kanki Y, Kawai Y, Inoue K, Daida H, Yano K, Ohhashi T, Oettgen P, Aird WC, Kodama T, Minami T.J Biol Chem. 2009 Oct 16;284(42):29109-24. PMID: 1967497


18.

Antibody neutralization of TGF-beta enhances the deterioration of collagen fascicles in a tissue-cultured tendon matrix with ex vivo fibroblast infiltration.Azuma C, Tohyama H, Nakamura H, Kanaya F, Yasuda K.J Biomech. 2007;40(10):2184-90. PMID: 17462658


19.

Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma.Higashikawa K, Yoneda S, Tobiume K, Taki M, Shigeishi H, Kamata N.Cancer Res. 2007 Oct 1;67(19):9207-13. PMID: 17909026


20.

Ex vivo infiltration of fibroblasts into the tendon deteriorates the mechanical properties of tendon fascicles but not those of tendon bundles.Ikema Y, Tohyama H, Yamamoto E, Kanaya F, Yasuda K.Clin Biomech (Bristol, Avon). 2007 Jan;22(1):120-6. PMID: 17084002


21.

TGF-beta and glutathione promote tissue repair in cigarette smoke induced injury.Noguchi C, Umino T, Miyazaki Y, Jinta T, Usui Y, Yoshizawa Y.J Med Dent Sci. 2007 Mar;54(1):109-16. PMID: 19845143


22.

Middle ear mucosa regeneration by grafting of artificial mucosa.Yaguchi Y, Wada K, Uchimizu H, Tanaka Y, Kojima H, Moriyama H.Acta Otolaryngol. 2007 Oct;127(10):1038-44. PMID: 17851908


23.

Immunohistochemical distribution of heat shock protein 47 (HSP47) in scirrhous carcinoma of the stomach.Hirai K, Kikuchi S, Kurita A, Ohashi S, Adachi E, Matsuoka Y, Nagata K, Watanabe M.Anticancer Res. 2006 Jan-Feb;26(1A):71-8. PMID: 16475681


24.

In vitro reconstruction of a three-dimensional middle ear mucosal organ and its in vivo transplantation.Wada K, Tanaka Y, Kojima H, Inamatsu M, Yoshizato K, Moriyama H.Acta Otolaryngol. 2006 Aug;126(8):801-10. PMID: 16846921


25.

Growth kinetics and integrin expression of fibroblasts infiltrating devitalised patellar tendons are different from those of intrinsic fibroblasts.Ikema Y, Tohyama H, Nakamura H, Kanaya F, Yasuda K.J Bone Joint Surg Br. 2005 Dec;87(12):1689-93. PMID: 16326888


26.

Creation of a cholesteatoma model using three-dimensional cultured skin equivalents.Tanaka Y, Yaguchi Y, Wada K, Kojima H, Moriyama H.Laryngoscope. 2005 Aug;115(8):1421-7. PMID: 16094116


27.

Characterization of hair follicles induced in implanted, cultured rat keratinocyte sheets.Miyashita H, Hakamata Y, Kobayashi E, Kobayashi K.Exp Dermatol. 2004 Aug;13(8):491-8. PMID: 15265013


28.

Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels.Berry CC, Shelton JC, Bader DL, Lee DA.Tissue Eng. 2003 Aug;9(4):613-24. PMID: 13678440


29.

In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM-216289 or xanthofulvin.Kikuchi K, Kishino A, Konishi O, Kumagai K, Hosotani N, Saji I, Nakayama C, Kimura T.J Biol Chem. 2003 Oct 31;278(44):42985-91. PMID: 12933805


30.

Colonization of in vitro-formed cervical human papillomavirus- associated (pre)neoplastic lesions with dendritic cells: role of granulocyte/macrophage colony-stimulating factor.Hubert P, van den Brüle F, Giannini SL, Franzen-Detrooz E, Boniver J, Delvenne P.Am J Pathol. 1999 Mar;154(3):775-84. PMID: 10079255


31.

Effects of microgravity on c-fos gene expression in osteoblast-like MC3T3-E1 cells.Sato A, Hamazaki T, Oomura T, Osada H, Kakeya M, Watanabe M, Nakamura T, Nakamura Y, Koshikawa N, Yoshizaki I, Aizawa S, Yoda S, Ogiso A, Takaoki M, Kohno Y, Tanaka H.Adv Space Res. 1999;24(6):807-13. PMID: 11542626


32.

Assembly of basement membrane in vitro by cooperation between alveolar epithelial cells and pulmonary fibroblasts.Furuyama A, Kimata K, Mochitate K.Cell Struct Funct. 1997 Dec;22(6):603-14. PMID: 9591052


33.

A reconstituted skin:Dermal-epidermal interactions in collagenolysis and cell morphology.YoshizatoK,NishikawaA,Taira T. Biomed Res, 7(4):219-31. 1986.

I-AC培养器材包被

1.

Three-Dimensional Cell Sheet Construction Method with a Polyester Micromesh Sheet.Hori T, Kurosawa O, Ishihara K, Mizuta T, Iwata H.Tissue Eng Part C Methods. 2020 Mar;26(3):170-179. PMID: 32186996


2.

The reduced susceptibility of mouse keratinocytes to retinoic acid may be involved in the keratinization of oral and esophageal mucosal epithelium.Miyazono S, Otani T, Ogata K, Kitagawa N, Iida H, Inai Y, Matsuura T, Inai T.Histochem Cell Biol. 2020 Jan 31. [Epub ahead of print] PMID: 32006103


3.

Biomechanical analysis of the mechanical environment of the cell nucleus in serum starvation-induced vascular smooth muscle cell differentiation.Kazuaki NAGAYAMA.Journal of Biomechanical Science and Engineering, Vol.14, No.4 (2019)


4.

Differential transactivation of the upstream aggrecan enhancer regulated by PAX1/9 depends on SOX9-driven transactivation.Takimoto A, Kokubu C, Watanabe H, Sakuma T, Yamamoto T, Kondoh G, Hiraki Y, Shukunami C.Sci Rep. 2019 Mar 14;9(1):4605. PMID: 30872687


5.

Endovascular trophoblast expresses CD59 to evade complement-dependent cytotoxicity.Ueda M, Sato Y, Horie A, Tani H, Miyazaki Y, Okunomiya A, Matsumoto H, Hamanishi J, Kondoh E, Mandai M.Mol Cell Endocrinol. 2019 Apr 11. pii: S0303-7207(19)30106-6. PMID: 30981734


6.

CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway.Yasui H1,2, Kajiyama H3, Tamauchi S1, Suzuki S1, Peng Y1, Yoshikawa N1, Sugiyama M1, Nakamura K1, Kikkawa F1.Clin Exp Metastasis. 2020 Feb;37(1):145-158. PMID: 31541326


7.

Reciprocal expression of Slug and Snail in human oral cancer cells.Nakamura R, Ishii H, Endo K, Hotta A, Fujii E, Miyazawa K, Saitoh M.PLoS One. 2018 Jul 3;13(7):e0199442. PMID: 29969465


8.

MicroRNA 148a-3p promotes Thrombospondin-4 expression and enhances angiogenesis during tendinopathy development by inhibiting Krüppel-like factor 6.Ge H, Shrestha A, Liu C, Wu P, Cheng B.BiochemBiophys Res Commun. 2018 Jul 12;502(2):276-282. PMID: 29807011 PMID: 29807011


9.

Internalization of CD239 highly expressed in breast cancer cells: a potential antigen for antibody-drug conjugates.Kikkawa Y, Enomoto-Okawa Y, Fujiyama A, Fukuhara T, Harashima N, Sugawara Y, Negishi Y, Katagiri F, Hozumi K, Nomizu M, Ito Y.Sci Rep. 2018 Apr 26;8(1):6612. PMID: 29700410.


10.

Enhanced survival and insulin secretion of insulinoma cell aggregates by incorporating gelatin hydrogel microspheres.Kanako Inoo, Hiroto Bando, Yasuhiko Tabata.Regenerative Therapy, Volume 8, June 2018, Pages 29-37.


11.

Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes.Shukunami C, Takimoto A, Nishizaki Y, Yoshimoto Y, Tanaka S, Miura S, Watanabe H, Sakuma T, Yamamoto T, Kondoh G, Hiraki Y.Sci Rep. 2018 Feb 16;8(1):3155. PMID: 29453333


12.

Actomyosin contractility provokes contact inhibition in E-cadherin-ligated keratinocytes.Hirata H, Samsonov M, Sokabe M.Sci Rep. 2017 Apr 13;7:46326. PMID: 28406163


13.

Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes.Kriszt R, Arai S, Itoh H, Lee MH, Goralczyk AG, Ang XM, Cypess AM, White AP, Shamsi F, Xue R, Lee JY, Lee SC, Hou Y, Kitaguchi T, Sudhaharan T, Ishiwata S, Lane EB, Chang YT, Tseng YH, Suzuki M, Raghunath M.Sci Rep. 2017 May 3;7(1):1383. PMID: 28469146


14.

The novel G-quadruplex-containing long non-coding RNA GSEC antagonizes DHX36 and modulates colon cancer cell migration.Matsumura K, Kawasaki Y, Miyamoto M, Kamoshida Y, Nakamura J, Negishi L, Suda S, Akiyama T.Oncogene. 2017 Mar 2;36(9):1191-1199. PMID: 27797375


15.

Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.Mobasseri R, Tian L, Soleimani M, Ramakrishna S, Naderi-Manesh H.BiochemBiophys Res Commun. 2017 Jan 29;483(1):312-317. PMID: 28025144


16.

Methanol and Butanol Extracts of Paeonia lutea Leaves Repress Metastasis of Squamous Cell Carcinoma.Mukudai Y, Zhang M, Shiogama S, Kondo S, Ito C, Motohashi H, Kato K, Fujii M, Shintani S, Shigemori H, Yazawa K, Shirota T.Evid Based Complement Alternat Med. 2016;2016:6087213. PMID: 2729346

2

17.

Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction.Nowell CS, Odermatt PD, Azzolin L, Hohnel S, Wagner EF, Fantner GE, Lutolf MP, Barrandon Y, Piccolo S, Radtke F.Nat Cell Biol. 2016 Feb;18(2):168-80. PMID: 26689676


18.

Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.Wang Q, Wang Y, Yu Z, Li D, Jia B, Li J, Guan K, Zhou Y, Chen Y, Kan Q.Arch BiochemBiophys. 2014 Aug;555-556:16-22. PMID: 24878366


19.

Isolation of mesenchymal stem cells from human dermis.Soma T, Kishimoto J, Fisher D.Methods Mol Biol. 2013;989:265-74. PMID: 23483401


20.

Dexamethasone-mediated transcriptional regulation of rat carboxylesterase 2 gene.Hori T, Jin L, Fujii A, Furihata T, Nagahara Y, Chiba K, Hosokawa M.Xenobiotica. 2012 Jul;42(7):614-23. PMID:22235919


21.

Fibroblast Growth Factor Receptor 2 IIIc as a Therapeutic Target for Colorectal Cancer Cells.Matsuda Y, Hagio M, Seya T, Ishiwata T.Mol Cancer Ther. 2012 Sep;11(9):2010-20. PMID:22778155


22.

Effect of preservation conditions of collagen substrate on its fibril formation and rabbit chondrocyte morphology.Nadzir MM, Kino-oka M, Sugawara K, Taya M.J BiosciBioeng. 2012 Sep;114(3):360-3. PMID: 22677065


23.

Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25.Senga K, Mostov KE, Mitaka T, Miyajima A, Tanimizu N.Mol Biol Cell. 2012 Aug;23(15):2845-55. PMID:22696678


24.

α1- and α5-containing Laminins Regulate the Development of Bile Ducts via β1 Integrin Signals.Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A.J Biol Chem. 2012 Aug 17;287(34):28586-97. PMID:22761447


25.

Modulation of cytochrome P450 gene expression in primary hepatocytes on various artificial extracellular matrices.Adachi T, Goto M, Cho CS, Akaike T.BiochemBiophys Res Commun. 2011 Oct 7;413(4):577-81. PMID: 21930114


26.

Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer.Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng WX, Yamamoto T, Nakazawa N, Seya T, Ohaki Y, Naito Z.Cancer Lett. 2011 Oct 28;309(2):209-19. PMID: 21745712


27.

Bile salt export pump inhibitors are associated with bile acid-dependent drug-induced toxicity in sandwich-cultured hepatocytes.Ogimura E, Sekine S, Horie T.BiochemBiophys Res Commun. 2011 Dec 16;416(3-4):313-7. PMID: 22108051


28.

Combined stimulation with cyclic stretching and hypoxia increases production of matrix metalloproteinase-9 and cytokines by macrophages.Oya K, Sakamoto N, Ohashi T, Sato M.BiochemBiophys Res Commun. 2011 Sep 9;412(4):678-82. PMID: 21867689


29.

Cell behavior on protein matrices containing laminin α1 peptide AG73.Yamada Y, Katagiri F, Hozumi K, Kikkawa Y, Nomizu M.Biomaterials. 2011 Jul;32(19):4327-35. PMID: 21420730


30.

Enhanced expression of lumican inhibited the attachment and growth of human embryonic kidney 293 cells.Ishiwata T, Yamamoto T, Kawahara K, Kawamoto Y, Matsuda Y, Ishiwata S, Naito Z.Exp Mol Pathol. 2010 Jun;88(3):363-70. PMID: 20138170


31.

Are integrin alpha(2)beta(1), glycoprotein Ib and vWf levels correlated with their contributions to platelet adhesion on collagen under high-shear flow?Jung SM, Sonoda M, Tsuji K, Jimi A, Nomura S, Kanaji T, Moroi M.Platelets. 2010;21(2):101-11. PMID: 20063990


32.

The adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis.Kawasaki Y, Jigami T, Furukawa S, Sagara M, Echizen K, Shibata Y, Sato R, Akiyama T.J Biol Chem. 2010 Jan 8;285(2):1199-207. PMID: 19897489


33.

Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C.J Struct Biol. 2010 Nov;172(2):191-202. PMID: 20723603


34.

Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes.Sasai N, Agata N, Inoue-Miyazu M, Kawakami K, Kobayashi K, Sokabe M, Hayakawa K.Muscle Nerve. 2010 Jan;41(1):100-6. PMID: 19768770


35.

Expression of Notch signalling-related genes in normal and differentiating rat dental pulp cells.Sun H, Kawashima N, Xu J, Takahashi S, Suda H.Aust Endod J. 2010 Aug;36(2):54-8. PMID: 20666749


36.

Natalizumab has no direct biological effect on JC virus infectivity in permissive human neural cell lines.Suzuki T, Yamanouchi S, Sunden Y, Orba Y, Kimura T, Sawa H.J Med Virol. 2010 Jul;82(7):1229-35. PMID: 20513089


37.

Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.HannachiImen E, Nakamura M, Mie M, Kobatake E.J Biotechnol. 2009 Jan 1;139(1):19-25. PMID: 18984018


38.

Adenomatous polyposis coli and Asef function downstream of hepatocyte growth factor and phosphatidylinositol 3-kinase.Kawasaki Y, Tsuji S, Sagara M, Echizen K, Shibata Y, Akiyama T.J Biol Chem. 2009 Aug 14;284(33):22436-43. PMID: 19525225


39.

A collagen-coated surface enables quantitative evaluation of morphological behaviors of rabbit chondrocytes relating to cell differentiation in an early culture phase.Ali BaradarKhoshfetrata, Masahiro Kino-okaa, KatsuraSugawarab and Masahito TayaBiochemical Engineering Journal Volume 45, Issue 1, 1 June 2009, Pages 60-68


40.

ATP Release from Cultured Endothelial Cells and Intercellular Calcium Signaling during Shear Stress Exposure.Kudo Susumu, Hosoe Kaoru, Hosobuchi Makoto, Kawasaki Naoto, Tanishita KazuoJournal of Biomechanical Science and Engineering 4(2), 274-285, 2009.


41.

Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments.LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, Petersen OW, Bissell MJ.Integr Biol (Camb). 2009 Jan;1(1):70-9. PMID: 20023793


42.

Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions.Nakagawa H, Suzuki H, Machida S, Suzuki J, Ohashi K, Jin M, Miyamoto S, Terasaki AG.PLoS One. 2009 Oct 23;4(10):e7530. PMID: 19851499


43.

Asef2 and Neurabin2 cooperatively regulate actin cytoskeletal organization and are involved in HGF-induced cell migration.Sagara M, Kawasaki Y, Iemura SI, Natsume T, Takai Y, Akiyama T.Oncogene. 2009 Mar 12;28(10):1357-65. PMID: 19151759


44.

Detection of mRNA in single living cells using AFM nanoprobes.Uehara H, Ikai A, Osada T.Methods Mol Biol. 2009;544:599-608. PMID: 19488726


45.

Expansion and characterization of adipose tissue-derived stromal cells cultured with low serum medium.Hattori H, Nogami Y, Tanaka T, Amano Y, Fukuda K, Kishimoto S, Kanatani Y, Nakamura S, Takase B, Ishihara M.J Biomed Mater Res B Appl Biomater. 2008 Oct;87(1):229-36. PMID: 18496860


46.

Different regulation of hepatocyte behaviors between natural extracellular matrices and synthetic extracellular matrices by hepatocyte growth factor.Hoshiba T, Wakejima M, Cho CS, Shiota G, Akaike T.J Biomed Mater Res A. 2008 Apr;85(1):228-35. PMID: 17688272


47.

Ectopic transplantation of hepatocyte sheets fabricated with temperature-responsive culture dishes.Kano K, Yamato M, Okano T.Hepatol Res. 2008;38(11):1140-7. PMID: 18513332


48.

Effect of dehydroaltenusin-C12 derivative, a selective DNA polymerase alpha inhibitor, on DNA replication in cultured cells.Kuriyama I, Mizuno T, Fukudome K, Kuramochi K, Tsubaki K, Usui T, Imamoto N, Sakaguchi K, Sugawara F, Yoshida H, Mizushina Y.Molecules. 2008 Dec 1;13(12):2948-61. PMID: 19043348


49.

Primary hepatocyte survival on non-integrin-recognizable matrices without the activation of Akt signaling.Hoshiba T, Nagahara H, Cho CS, Tagawa Y, Akaike T.Biomaterials. 2007 Feb;28(6):1093-104. PMID: 17081603


50.

Epidermal growth factor signaling for matrix-dependent cell proliferation and differentiation in primary cultured hepatocytes.Kim SH, Akaike T.Tissue Eng. 2007 Mar;13(3):601-9. PMID: 17518606


51.

Comparison of basal gene expression and induction of CYP3As in HepG2 and human fetal liver cells.Maruyama M, Matsunaga T, Harada E, Ohmori S.Biol Pharm Bull. 2007 Nov;30(11):2091-7. PMID: 17978482


52.

A mechanism to safeguard platelet adhesion under high shear flow: von Willebrand factor-glycoprotein Ib and integrin alphabeta-collagen interactions make complementary, collagen-type-specific contributions to adhesion.Moroi M, Jung SM.J ThrombHaemost. 2007 Apr;5(4):797-803. PMID: 17408410


53.

Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation.Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, Iwata H.Biomaterials. 2007 Feb;28(6):1048-60. PMID: 17081602


54.

Identification and characterization of GSRP-56, a novel Golgi-localized spectrin repeat-containing protein.Kobayashi Y, Katanosaka Y, Iwata Y, Matsuoka M, Shigekawa M, Wakabayashi S.Exp Cell Res. 2006 Oct 1;312(16):3152-64. PMID: 16875688


55.

Murine metanephric mesenchyme possesses characteristics of vascular endothelial cells in vitro.Usui J, Yamada R, Kanemoto K, Koyama A, Nagata M.Nephron Exp Nephrol. 2006;102(3-4):e93-8. PMID: 16282704


56.

Association of expression of receptor for advanced glycation end products and invasive activity of oral squamous cell carcinoma.Bhawal UK, Ozaki Y, Nishimura M, Sugiyama M, Sasahira T, Nomura Y, Sato F, Fujimoto K, Sasaki N, Ikeda MA, Tsuji K, Kuniyasu H, Kato Y.Oncology. 2005;69(3):246-55. PMID: 16127291


57.

Fibrous component of the blastocoelic extracellular matrix shapes epithelia in concert with mesenchyme cells in starfish embryos.Kaneko H, Okai M, Murabe N, Shimizu T, Ikegami S, Dan-Sohkawa M.Dev Dyn. 2005 Apr;232(4):915-27. PMID: 15739228


58.

Differential growth properties of normal and malignant esophageal epithelial cells: a possible cross talk between transforming growth factor-beta1 and epidermal growth factor signaling.Katayama M, Shoji M, Satomi S.Tohoku J Exp Med. 2005 May;206(1):61-71. PMID: 15802876


59.

Process design of chondrocyte cultures with monolayer growth for cell expansion and subsequent three-dimensional growth for production of cultured cartilage.Kino-oka M, Maeda Y, Ota Y, Yashiki S, Sugawara K, Yamamoto T, Taya M.J BiosciBioeng. 2005 Jul;100(1):67-76. PMID: 16233853


60.

Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome.Koshikawa M, Mukoyama M, Mori K, Suganami T, Sawai K, Yoshioka T, Nagae T, Yokoi H, Kawachi H, Shimizu F, Sugawara A, Nakao K.J Am Soc Nephrol. 2005 Sep;16(9):2690-701. PMID: 15987752


61.

Effect of fluid force on vascular cell function.Kudo S, Yamaguchi R, Ikeda M, Tanishita K.J PhysiolAnthropol Appl Human Sci. 2005 Jul;24(4):459-61. PMID: 16079597


62.

Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer.Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, Itoh A, Funata N, Schreiber SL, Yoshida M, Toi M.Oncogene. 2005 Jun 30;24(28):4531-9. PMID: 15806142


63.

Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries.Sato Y, Fujiwara H, Zeng BX, Higuchi T, Yoshioka S, Fujii S.Blood. 2005 Jul 15;106(2):428-35. PMID: 15797992


64.

Regulation of biological activity and matrix assembly of laminin-5 by COOH-terminal, LG4-5 domain of alpha3 chain.Tsubota Y, Yasuda C, Kariya Y, Ogawa T, Hirosaki T, Mizushima H, Miyazaki K.J Biol Chem. 2005 Apr 15;280(15):14370-7. PMID: 15695818


65.

Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells.Date T, Kato T, Miyamoto M, Zhao Z, Yasui K, Mizokami M, Wakita T.J Biol Chem. 2004 May 21;279(21):22371-6. PMID: 14990575


66.

Astrocytes express type VIII collagen during the repair process of brain cold injury.Hirano S, Yonezawa T, Hasegawa H, Hattori S, Greenhill NS, Davis PF, Sage EH, Ninomiya Y.BiochemBiophys Res Commun. 2004 Apr 30;317(2):437-43. PMID: 15063777


67.

Expression of lysosomal protective protein/cathepsin A in a stably transformed human neuroblastoma cell line during bi-directional differentiation into neuronal and Schwannian cells.Itoh K, Satoh Y, Kadota Y, Oheda Y, Kuwahara J, Shimmoto M, Sakuraba H.Neurochem Int. 2004 May;44(6):447-57. PMID: 14687610


68.

Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment.Gotoh Y, Niimi S, Hayakawa T, Miyashita T.Biomaterials. 2004 Mar;25(6):1131-40. PMID: 14615179


69.

Antithrombogenicity of cultured endothelial cells exposed to blood under stagnant flow conditions.Makoto Kaibara, TasukuYotoriyama, Ryutaro Himeno.Journal of Japanese Society of Biorheology. Vol. 18 (2004) No. 1 p. 52-59.


70.

The basement membrane protein laminin-5 acts as a soluble cell motility factor.Kariya Y, Miyazaki K.Exp Cell Res. 2004 Jul 15;297(2):508-20. PMID: 15212952


71.

N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor.Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, Endo T.J Biol Chem. 2004 Dec 24;279(52):54862-71. PMID: 15496413


72.

Hepatocyte behavior on synthetic glycopolymer matrix: inhibitory effect of receptor-ligand binding on hepatocyte spreading.Kim SH, Hoshiba T, Akaike T.Biomaterials. 2004 May;25(10):1813-23. PMID: 14738845


73.

Microbial serine carboxypeptidase inhibitors–comparative analysis of actions on homologous enzymes derived from man, yeast and wheat.Satoh Y, Kadota Y, Oheda Y, Kuwahara J, Aikawa S, Matsuzawa F, Doi H, Aoyagi T, Sakuraba H, Itoh K.J Antibiot (Tokyo). 2004 May;57(5):316-25. PMID: 15303492


74.

Human amniotic epithelial cells possess hepatocyte-like characteristics and functions.Takashima S, Ise H, Zhao P, Akaike T, Nikaido T.Cell Struct Funct. 2004 Jun;29(3):73-84. PMID: 15528839


75.

Expression of calcineurin B homologous protein 2 protects serum deprivation-induced cell death by serum-independent activation of Na+/H+ exchanger.Pang T, Wakabayashi S, Shigekawa M.J Biol Chem. 2002 Nov 15;277(46):43771-7. PMID: 12226101


76.

Acquisition of susceptibility to hepatitis C virus replication in HepG2 cells by fusion with primary human hepatocytes: establishment of a quantitative assay for hepatitis C virus infectivity in a cell culture system.Ito T, Yasui K, Mukaigawa J, Katsume A, Kohara M, Mitamura K.Hepatology. 2001 Sep;34(3):566-72. PMID: 11526543


77.

Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death.Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M.J Biol Chem. 1997 Jul 25;272(30):18842-8. PMID: 9228060


78.

Possible involvement of a novel protease in neurite outgrowth of PC12 cells.Saito Y, Tsubuki S, Ito H, Kawashima S.Neurosci Res Suppl. 1990;13:S97-101. PMID: 2088345

I-AC支架制备/包被

1.

Cell fibers promote proliferation of co-cultured cells on a dish.Shima A, Itou A, Takeuchi S.Sci Rep. 2020 Jan 14;10(1):288. PMID: 31937888


2.

Microfiber-shaped building-block tissues with endothelial networks for constructing macroscopic tissue assembly.Kurashina Y, Sato R, Onoe H.APL Bioeng. 2019 Nov 13;3(4):046101. PMID: 31737859


3.

A novel micro-grooved collagen substrate for inducing vascular smooth muscle differentiation through cell tissue arrangement and nucleus remodeling.Nagayama K, Uchida K, Sato A.J Mech Behav Biomed Mater. 2019 Feb;90:295-305. PMID: 30396043


4.

Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.Takehara H, Sakaguchi K, Sekine H, Okano T, Shimizu T.Biomed Microdevices. 2019 Dec 20;22(1):9. PMID: 31863202


5.

Temporal Observation of Adipocyte Microfiber Using Anchoring Device.Yokomizo A, Morimoto Y, Nishimura K, Takeuchi S.Micromachines (Basel). 2019 May 29;10(6). PMID: 31146491


6.

VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells.Adibfar A, Amoabediny G, BaghabanEslaminejad M, Mohamadi J, Bagheri F, ZandiehDoulabi B.Mater Sci Eng C Mater Biol Appl. 2018 Dec 1;93:790-799. PMID: 30274113


7.

Double-layer perfusable collagen microtube device for heterogeneous cell culture.Itai S, Tajima H, Onoe H.Biofabrication. 2018 Nov 30;11(1):015010. PMID: 30499456


8.

An allogeneic 'off the shelf' therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells.O'Rourke C, Day AGE, Murray-Dunning C, Thanabalasundaram L, Cowan J, Stevanato L, Grace N, Cameron G, Drake RAL, Sinden J, Phillips JB.Sci Rep. 2018 Feb 13;8(1):2951. PMID: 29440680


9.

Anchorage-dependent cell expansion in fiber-shaped microcarrier aggregates.Ikeda K, Takeuchi S.Biotechnol Prog. 2019 Mar;35(2):e2755. PMID: 30468323.


10.

Optimal biomaterials for tracheal epithelial grafts: an in vitro systematic comparative analysis.Varma R, Aoki FG, Soon K, Karoubi G, Waddell TK.Acta Biomater. 2018 Nov;81:146-157. PMID: 30268918


11.

The Effect of Hypothermic and Cryogenic Preservation on Engineered Neural Tissue.Day AGE, Bhangra KS, Murray-Dunning C, Stevanato L, Phillips J.Tissue Eng Part C Methods. 2017 Oct;23(10):575-582. PMID: 28877649


12.

Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary.Yoshida K, Onoe H.Sci Rep. 2017 Apr 5;7:45987. doi: 10.1038/srep45987. PMID: 28378803


13.

Compartmentalized Spherical Collagen Microparticles for Anisotropic Cell Culture Microenvironments.Yoshida S, Takinoue M, Onoe H.Adv Healthc Mater. 2017 Apr;6(8). PMID: 28322015


14.

Collagen Vitrigels with Low-fibril Density Enhance Human Embryonic Stem. Cell-Derived Retinal Pigment Epithelial Cell Maturation.Wang X, Maruotti J, Majumdar S, Roman J, Mao HQ, Zack D, Elisseeff J.J Tissue Eng Regen Med. 2018 Mar;12(3):821-829. PMID: 29049869


15.

3D Tissue Formation of Unilocular Adipocytes in Hydrogel Microfibers.Hsiao AY, Okitsu T, Teramae H, Takeuchi S. Adv Healthc Mater. 2016 Mar 9;5(5):548-56. PMID: 26680212


16.

Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.Majumdar S, Guo Q, Garza-Madrid M, Calderon-Colon X, Duan D, Carbajal P, Schein O, Trexler M, Elisseeff J.J Biomed Mater Res B Appl Biomater. 2016 Feb;104(2):300-7. PMID: 25766399


17.

An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings.Matsumura R, Yamamoto H, Niwano M, Hirano-Iwata A.Appl Phys Lett. 2016 Jan 11;108(2):023701.PMID: 27703279


18.

Vessel-like channels supported by poly-l-lysine tubes.Mori N, Morimoto Y, Takeuchi S.J BiosciBioeng. 2016 Dec;122(6):753-757 PMID: 27323931


19.

Formation of Highly Aligned Collagen Nanofibers by Continuous Cyclic Stretch of a Collagen Hydrogel Sheet.Nam , Lee WC, Takeuchi S.MacromolBiosci. 2016 Jul;16(7):995-1000. PMID: 27136124


20.

Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency.Chae JJ, Ambrose WM, Espinoza FA, Mulreany DG, Ng S, Takezawa T, Trexler MM, Schein OD, Chuck RS, Elisseeff JH.


21.

Acta Ophthalmol. 2015 Feb;93(1):e57-66. PMID: 25495158. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.Hsiao AY, Okitsu T, Onoe H, Kiyosawa M, Teramae H, Iwanaga S, Kazama T, Matsumoto T, Takeuchi S.PLoS One. 2015 Mar 3;10(3):e0119010. PMID: 25734774


22.

Optimization of optical and mechanical properties of Real Architecture for 3-Dimensional Tissue equivalents: Towards treatment of limbal epithelial stem cell deficiency.Massie I, Kureshi AK, Schrader S, Shortt AJ, Daniels JT.Acta Biomater. 2015 Sep 15;24:241-50. PMID: 2609235

2

23.

Fabrication of fibrillized collagen microspheres with the microstructure resembling an extracellular matrix.Matsuhashi A, Nam K, Kimura T, Kishida A.Soft Matter. 2015 Apr 14;11(14):2844-51. PMID: 25708876


24.

Preparation Fibrillized Collagen-Glycosaminoglycan Complex Matrix Using Fibrillogenesis.Nam, K., Kimura, T. and Kishida, A.MacromolSymp. 2015 358:95–105.


25.

Neural stem/progenitor cell-laden microfibers promote transplant survival in a mouse transected spinal cord injury model.Sugai K, Nishimura S, Kato-Negishi M, Onoe H, Iwanaga S, Toyama Y, Matsumoto M, Takeuchi S, Okano H, Nakamura M.J Neurosci Res. 2015 Dec;93(12):1826-38. PMID: 26301451


26.

Activation of Yes-Associated Protein in Low-Grade Meningiomas Is Regulated by Merlin, Cell Density, and Extracellular Matrix Stiffness.Tanahashi K, Natsume A, Ohka F, Motomura K, Alim A, Tanaka I, Senga T, Harada I, Fukuyama R, Sumiyoshi N, Sekido Y, Wakabayashi T.J Neuropathol Exp Neurol. 2015 Jul;74(7):704-9. PMID: 26049897


27.

Application of a collagen-based membrane and chondroitin sulfate-based hydrogel adhesive for the potential repair of severe ocular surface injuries.Chae JJ, Mulreany DG, Guo Q, Lu Q, Choi JS, Strehin I, Espinoza FA, Schein O, Trexler MM, Bower KS, Elisseeff JH.Mil Med. 2014 Jun;179(6):686-94. PMID: 24902138


28.

Design and construction of an equibiaxial cell stretching system that is improved for biochemical analysis.Ursekar CP, Teo SK, Hirata H, Harada I, Chiam KH, Sawada Y.PLoS One. 2014 Mar 13;9(3):e90665. PMID: 24626190


29.

Banded structures in collagen vitrigels for corneal injury repair.Xia Z, Calderón-Colón X, McCally R, Maranchi J, Rong L, Hsiao B, Elisseeff J, Trexler M.Acta Biomater. 2014 Aug;10(8):3615-9. PMID: 24859294


30.

Vitrified collagen-based conjunctival equivalent for ocular surface reconstruction.Zhou H, Lu Q, Guo Q, Chae J, Fan X, Elisseeff JH, Grant MP.Biomaterials. 2014 Aug;35(26):7398-406. PMID: 24933512


31.

Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair.Guo Q, Phillip JM, Majumdar S, Wu PH, Chen J, Calderón-Colón X, Schein O, Smith BJ, Trexler MM, Wirtz D, Elisseeff JH.Biomaterials. 2013 Dec;34(37):9365-72. PMID: 24041426


32.

Substrate stiffness regulates temporary NF-κB activation via actomyosin contractions.Ishihara S, Yasuda M, Harada I, Mizutani T, Kawabata K, Haga H.Exp Cell Res. 2013 Nov 15;319(19):2916-27. PMID: 24113574


33.

Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga YT, Shimoyama Y, Takeuchi S. Nat Mater. 2013 Jun;12(6):584-90. PMID: 23542870


34.

Regenerative process of tracheal epithelium using a collagen vitrigel sponge scaffold.Tani A, Tada Y, Takezawa T, Wada I, Imaizumi M, Nomoto Y, Nomoto M, Omori K.Laryngoscope. 2013 Jun;123(6):1469-73. PMID: 23625522


35.

Cellular response to substrate rigidity is governed by either stress or strain.Yip AK, Iwasaki K, Ursekar C, Machiyama H, Saxena M, Chen H, Harada I, Chiam KH, Sawada Y.Biophys J. 2013 Jan 8;104(1):19-29. PMID: 23332055


36.

Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications.Calderón-Colón X, Xia Z, Breidenich JL, Mulreany DG, Guo Q, Uy OM, Tiffany JE, Freund DE, McCally RL, Schein OD, Elisseeff JH, Trexler MM.Biomaterials. 2012 Nov;33(33):8286-95. PMID: 22920579


37.

Local mechanical stimulation of mardin-darby canine kidney cell sheets on temperature-responsive hydrogel.Harada I, Yanagisawa S, Iwasaki K, Cho CS, Akaike T.Int J Mol Sci. 2012;13(1):1095-108. PMID:22312306


38.

Hybrid scaffolds composed of hyaluronic acid and collagen for cartilage regeneration.Hyun Jung Kim, KabKeun Kim, Il Kyu Park, Baek Sun Choi, Jae Ho Kim and Moon Suk Kim. Tissue Engineering and Regenerative Medicine. Volume 9, Number 2 (2012), 57-62.


39.

Fabrication of a heterostructural fibrillated collagen matrix for the regeneration of soft tissue function.Kwangwoo Nam, Yuuki Sakai, Yoshihide Hashimoto, Tsuyoshi Kimura and Akio Kishida. Soft Matter, 2012, 8, 472-480.


40.

Matrix compliance and RhoA direct the differentiation of mammary progenitor cells.Lui C, Lee K, Nelson CM.Biomech Model Mechanobiol. 2012 Nov;11(8):1241-9. PMID: 22161021


41.

Regulation of growth factors-associated cell migration by C-phycocyanin scaffold in dermal wound healing.Madhyastha H, Madhyastha R, Nakajima Y, Omura S, Maruyama M.Clin Exp Pharmacol Physiol. 2012 Jan;39(1):13-9. PMID:21995435


42.

Heterofunctional nanosheet controlling cell adhesion properties by collagen coating.Niwa D, Fujie T, Lang T, Goda N, Takeoka S.J Biomater Appl. 2012 Aug;27(2):131-41. PMID: 21343215


43..

Thermal denaturation of type I collagen vitrified gels.Zhiyong Xia, Xiomara Calderon-Colona, Morgana Trexlera, Jennifer Elisseeffb, QiongyuGuob. ThermochimicaActaVolume 527, 10 January 2012, Pages 172–179.


44.

Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

Nam K, Sakai Y, Funamoto S, Kimura T, Kishida A.J Biomater Sci Polym Ed. 2011;22(15):1963-82. PMID: 20961498


45.

A nano-fibrous assembly of collagen–hyaluronic acid for controlling cell-adhesive properties.ToshinoriFujie, ShoFurutate, Daisuke Niwaa and Shinji Takeoka. Soft Matter, 2010,6, 4672-4676


46.

Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent.Nam K, Kimura T, Funamoto S, Kishida A.Acta Biomater. 2010 Feb;6(2):403-8. PMID: 19531383


47.

Preparation of a collagen/polymer hybrid gel for tissue membranes. Part II: in vitro and in vivo biological properties of the collagen gels.Nam K, Kimura T, Funamoto S, Kishida A.Acta Biomater. 2010 Feb;6(2):409-17. PMID: 19539060


48.

Micro 3D Culture System using Hyaluronan-Collagen Capsule for Skeletal Muscle-Derived Stem Cells.Tono-Okada K, Okada Y, Masuda Y, Akio Hoshi, Akira Akatsuka, Akira Teramoto, Koji Abe and Tetsuro Tamaki.Open Tissue Eng Regen Med J, 2010, 3, 18-27.


49.

Construction and Biofunction of 3-Dimensional Self-assembly Collagen Nanostructure on PLLA Substrate.Shouhong Xu, Aiping Liu, Xiaoxiao Lin, Honglai Liu and MasakastuYonese. Chin J Chem. 2010 28: 1565–1574.


50.

Cryopreservation in situ of cell monolayers on collagen vitrigel membrane culture substrata: ready-to-use preparation of primary hepatocytes and ES cells.Miyamoto Y, Enosawa S, Takeuchi T, Takezawa T.Cell Transplant. 2009;18(5):619-26. PMID: 19775524


51.

Reconstruction of three-dimensional human skin model composed of dendritic cells, keratinocytes and fibroblasts utilizing a handy scaffold of collagen vitrigel membrane.Uchino T, Takezawa T, Ikarashi Y.Toxicol In Vitro. 2009 Mar;23(2):333-7. PMID: 19121381


52.

Bone regeneration using collagen type I vitrigel with bone morphogenetic protein-2.Zhao J, Shinkai M, Takezawa T, Ohba S, Chung UI, Nagamune T. J BiosciBioeng. 2009 Mar;107(3):318-23. PMID: 19269600


53.

The osteogenic differentiation of adipose tissue-derived precursor cells in a 3D scaffold/matrix environment.Leong DT, Nah WK, Gupta A, Hutmacher DW, Woodruff MA.Curr Drug Discov Technol. 2008 Dec;5(4):319-27. PMID: 19075612


54.

Physical and biological properties of collagen-phospholipid polymer hybrid gels.Nam K, Kimura T, Kishida A.Biomaterials. 2007 Jul;28(20):3153-62. PMID: 17391753


55.

Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels.Nam K, Kimura T, Kishida A.Biomaterials. 2007 Jan;28(1):1-8. PMID: 16959313


56.

Reconstruction of a hard connective tissue utilizing a pressed silk sheet and type-I collagen as the scaffold for fibroblasts.Takezawa T, Ozaki K, Takabayashi C.Tissue Eng. 2007 Jun;13(6):1357-66. PMID: 17518702


57.

Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo.Takezawa T, Takeuchi T, Nitani A, Takayama Y, Kino-Oka M, Taya M, Enosawa S.J Biotechnol. 2007 Aug 1;131(1):76-83. PMID: 17624459


58.

Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T.BiotechnolBioeng. 2006 Apr 20;93(6):1152-63. PMID: 16470881


59.

Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.Hiromoto S, Hanawa T.J R Soc Interface. 2006 Aug 22;3(9):495-505. PMID: 16849246


60.

Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering.Kim SH, Kwon JH, Chung MS, Chung E, Jung Y, Kim SH, Kim YH.J Biomater Sci Polym Ed. 2006;17(12):1359-74. PMID: 17260508


61.

In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces.Li CY, Gao SY, Terashita T, Shimokawa T, Kawahara H, Matsuda S, Kobayashi N.Cell Tissue Res. 2006 Jun;324(3):369-75. PMID: 16450122


62.

Novel tissue-engineered biodegradable material for reconstruction of vascular wall.Iwai S, Sawa Y, Taketani S, Torikai K, Hirakawa K, Matsuda H.Ann Thorac Surg. 2005 Nov;80(5):1821-7. PMID: 16242461


63.

Co-electrospun nanofiber fabrics of poly(L-lactide-co-epsilon-caprolactone) with type I collagen or heparin.Kwon IK, Matsuda T.Biomacromolecules. 2005 Jul-Aug;6(4):2096-105. PMID: 16004450


64.

In vitro and in vivo study of He+ ion irradiated collagen for development of small diameter stent graft material.Y. Suzuki, M. Iwaki, N. Takahashi, T. Yotoriyama, K. Kurotobi, H. Ujiie, T. Hori.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 232, Issues 1–4, May 2005, Pages 353-357.


65.

The changes of cell adhesion to collagen-coated Al2O3 by ion bombardment.Y. Yokoyama, T. Tsukamoto, T. Kobayashi, M. Iwaki.Surface and Coatings Technology, Volume 196, Issues 1–3, 22 June 2005, Pages 298-302.


66.

Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids.Takezawa T, Ozaki K, Nitani A, Takabayashi C, Shimo-Oka T. Cell Transplant. 2004;13(4):463-73. PMID: 15468688

I-AC凝胶上培养、其他

1.

Mouse skin fibroblasts with mesenchymal stem cell marker p75 neurotrophin receptor proliferate in response to prolyl-hydroxyproline.Tomoko T. Asai, Kazunobu Yoshikawa, Kazuhiro Sawada, KazunaFukamizu, Yoh-ichi Koyama, Yasutaka Shigemura, Shiro Jimi, Kenji Sato.Journal of Functional Foods, Volume 66, 2020.


2.

Discovery of Ti-Binding Abilities of Phosphorylated-Chitin and -Collagen.Yoshinori Kuboki, Seiichi Tokura, KimitoshiYagami, ToshitakeFurusawa, Kouichi Morimoto, Qin Song, Souhei (Xiaobing) Iku, Masaaki Kurasaki.Journal of Hard Tissue Biology, 2020 29(1):45-48.


3.

Food-Derived Collagen Peptides, Prolyl-Hydroxyproline (Pro-Hyp), and Hydroxyprolyl-Glycine (Hyp-Gly) Enhance Growth of Primary Cultured Mouse Skin Fibroblast Using Fetal Bovine Serum Free from Hydroxyprolyl Peptide.Asai TT, Oikawa F, Yoshikawa K, Inoue N, Sato K.Int J Mol Sci. 2019 Dec 28;21(1). PMID: 31905705


4.

Development of a collagen-like peptide polymer via end-to-end disulfide cross-linking and its application as a biomaterial.Ichise SF, Takeuchi S, Aoki S, Kuroda KC, Nose H, Masuda R, Koide T.Acta Biomater. 2019 Aug;94:361-371. PMID: 31200119


5.

Analysis of Ultraviolet Radiation Wavelengths Causing Hardening and Reduced Elasticity of Collagen Gels In Vitro.Kazuhisa Maeda.Cosmetics 2018, 5(1), 14.


6.

Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices.Yuya Morimoto, Mahiro Kiyosawa, Shoji Takeuchi.Sensors and Actuators B: Chemical, Volume 274, 2018, Pages 491-500.


7.

Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben.HarukaMorimoto ,Lihao Gu , Haifeng Zeng and Kazuhisa Maeda.Cosmetics 2017, 4(4), 38.


8.

Vascularized Tissue-Engineered Model for Studying Drug Resistance in Neuroblastoma.Villasante A, Sakaguchi K, Kim J, Cheung NK, Nakayama M, Parsa H, Okano T, Shimizu T, Vunjak-Novakovic G.Theranostics 2017; 7(17):4099-4117.


9.

Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model.Hashimoto Y, Hattori S, Sasaki S, Honda T, Kimura T, Funamoto S, Kobayashi H, Kishida A.Sci Rep. 2016 Jun 13;6:27734. PMID: 27291975


10.

Thermal denaturation behavior of collagen fibrils in wet and dry environment.Suwa Y, Nam K, Ozeki K, Kimura T, Kishida A, Masuzawa T.J Biomed Mater Res B Appl Biomater. 2016 Apr;104(3):538-45 PMID: 25952296


11.

Synergistic rate boosting of collagen fibrillogenesis in heterogeneous mixtures of crowding agents.Dewavrin JY, Abdurrahiem M, Blocki A, Musib M, Piazza F, Raghunath M.J Phys Chem B. 2015 Mar 26;119(12):4350-8. PMID: 25730613.


12.

Cellular characterization of thrombocytes in Xenopus laevis with specific monoclonal antibodies.Tanizaki Y, Ishida-Iwata T, Obuchi-Shimoji M, Kato T.Exp Hematol. 2015 Feb;43(2):125-36. PMID: 25448492


13.

Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding.Dewavrin JY, Hamzavi N, Shim VP, Raghunath M.Acta Biomater. 2014 Oct;10(10):4351-9. PMID: 24932771


14.

Migration of breast cancer cells into reconstituted type I collagen gels assessed via a combination of frozen sectioning and azan staining.Fukuda K, Kamoshida Y, Kurokawa T, Yoshida M, Fujita-Yamaguchi Y, Nakata M.Biosci Trends. 2014 Aug;8(4):212-6. PMID: 25224627


15.

Overexpression of integrin αv facilitates proliferation and invasion of oral squamous cell carcinoma cells via MEK/ERK signaling pathway that is activated by interaction of integrin αvβ8 with type Ⅰ collagen.Hayashido Y, Kitano H, Sakaue T, Fujii T, Suematsu M, Sakurai S, Okamoto T.Int J Oncol. 2014 Nov;45(5):1875-82. PMID: 25190218


16.

Relationships between molecular mobility, fibrillogenesis of collagen molecules, and the inflammatory response: An experimental study in vitro and in vivo.Nam K, Seo JH, Kimura T, Yui N, Kishida A.J Colloid Interface Sci. 2014 Jul 1;433C:16-25. PMID: 25112908


17.

In vitro engineering of vascularized tissue surrogates.Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M, Okano T.Sci Rep. 2013 Feb 19;3:1316. PMID: 23419835


18.

High-throughput turbidimetric screening for heparin-neutralizing agents and low-molecular-weight heparin mimetics.Sekiya A, Oishi S, Fujii N, Koide T.Chem Pharm Bull (Tokyo). 2012;60(3):371-6. PMID:22382418


19.

Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study.Ota H, Kodama T, Miki N.Biomicrofluidics. 2011 Sep;5(3):34105-3410515. PMID: 22662035


20.

Invasion of carcinoma cells into reconstituted type I collagen gels: visual real-time analysis by time-lapse microscopy.Sakai K, Kurokawa T, Furui Y, Kuronuma Y, Sekiguchi M, Ando J, Inagaki Y, Tang W, Nakata M, Fujita-Yamaguchi Y.Biosci Trends. 2011;5(1):10-6. PMID: 21422595


21.

TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition.Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, Miyazono K, Saitoh M.EMBO J. 2011 Feb 16;30(4):783-95. PMID: 21224849


22.

Essential modification of the Sircol Collagen Assay for the accurate quantification of collagen content in complex protein solutions.Lareu RR, Zeugolis DI, Abu-Rub M, Pandit A, Raghunath M.Acta Biomater. 2010 Aug;6(8):3146-51. PMID: 20144751


23.

Immortalization of normal human gingival keratinocytes and cytological and cytogenetic characterization of the cells.Kubo C, Tsutsui TW, Tamura Y, Kumakura S, Tsutsui T.Odontology. 2009 Jan;97(1):18-31. PMID: 19184294


24.

Effect of Prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin.Shigemura Y, Iwai K, Morimatsu F, Iwamoto T, Mori T, Oda C, Taira T, Park EY, Nakamura Y, Sato K.J Agric Food Chem. 2009 Jan 28;57(2):444-9. PMID: 19128041


25.

Self-assembly nano-structure of type I collagen adsorbed on Gemini surfactant LB monolayers.Xu S, Liu A, Chen Q, Lv M, Yonese M, Liu H.Colloids Surf B Biointerfaces. 2009 Apr 1;70(1):124-31. PMID: 19157808


26.

Auto-organized nano-structure of collagen on Gemini surfactant monolayer.Lv M, Chen Q, Yonese M, Xu S, Liu H.Colloids Surf B Biointerfaces. 2008 Feb 15;61(2):282-9. PMID: 17933500


27.

Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents.Nam K, Kimura T, Kishida A.MacromolBiosci. 2008 Jan 9;8(1):32-7. PMID: 18023082


28.

Network structure of collagen layers absorbed on LB film.Chen Q, Xu S, Li R, Liang X, Liu H.J Colloid Interface Sci. 2007 Dec 1;316(1):1-9. PMID: 17727873


29.

Transplantation of engineered bone tissue using a rotary three-dimensional culture system.Hidaka M, Su GN, Chen JK, Mukaisho K, Hattori T, Yamamoto G.In Vitro Cell Dev Biol Anim. 2007 Feb;43(2):49-58. PMID: 17570019


30.

Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro.Hosokawa T, Betsuyaku T, Nishimura M, Furuyama A, Katagiri K, Mochitate K.Connect Tissue Res. 2007;48(1):9-18. PMID: 17364662


31.

Intracellular events in retinal glial cells exposed to ICG and BBG.Kawahara S, Hata Y, Miura M, Kita T, Sengoku A, Nakao S, Mochizuki Y, Enaida H, Ueno A, Hafezi-Moghadam A, Ishibashi T.Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4426-32. PMID: 17898261


32.

Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect.Lareu RR, Subramhanya KH, Peng Y, Benny P, Chen C, Wang Z, Rajagopalan R, Raghunath M.FEBS Lett. 2007 Jun 12;581(14):2709-14. PMID: 17531987


33.

Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells.Asai N, Fukuda T, Wu Z, Enomoto A, Pachnis V, Takahashi M, Costantini F.Development. 2006 Nov;133(22):4507-16. PMID: 17050626


34.

The effect of natural extracellular matrix deposited on synthetic polymers on cultured primary hepatocytes.Hoshiba T, Cho CS, Murakawa A, Okahata Y, Akaike T.Biomaterials. 2006 Sep;27(26):4519-28. PMID: 16697038


35.

Initial bFGF Distribution Affects the Depth of Three-dimensional Microvessel Networks in Vitro.Akinori UEDA, Ryo SUDO, Mariko IKEDA, Susumu KUDO and Kazuo TANISHITA.Journal of Biomechanical Science and Engineering, Vol. 1, No. 1 (2006), pp.136-146.


36.

Hepatocyte growth factor inhibits the formation of the basement membrane of alveolar epithelial cells in vitro.Furuyama A1, Mochitate K.Am J Physiol Lung Cell Mol Physiol. 2004 May;286(5):L939-46. PMID: 14672920


37.

The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage.Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI.Arthritis Rheum. 2004 Nov;50(11):3561-73. PMID: 15529345


38.

Inhibitory effects of 9-(4-thio-beta-D-ribo-pentofuranosyl)guanine on tumor growth and angiogenesis.Miura S, Yamada K, Kano F, Yoshimura Y.Biol Pharm Bull. 2004 Apr;27(4):520-3. PMID: 15056858


39.

Stimulation of in vitro angiogenesis by nitric oxide through the induction of transcription factor ETS-1.Shimizu S, Kageyama M, Yasuda M, Sasaki D, Naito S, Yamamoto T, Kiuchi Y.Int J Biochem Cell Biol. 2004 Jan;36(1):114-22. PMID: 14592537


40.

Immunohistochemical Identification of HSP47 and Type I Procollagen-expressing Cells in Mongolian Gerbil Salivary Glands: Correlation with Age-related Fibrotic Changes.Harumi Tomisaki, JojiSekine, TsugioInokuchi, Shin-ichi Izumi, Kunio Takano.Oral Medicine & Pathology. 9(4), 141-148, 2004.


41.

Effect on endothelial cell gene expression of shear stress, oxygen concentration, and low-density lipoprotein as studied by a novel flow cell culture system.Warabi E, Wada Y, Kajiwara H, Kobayashi M, Koshiba N, Hisada T, Shibata M, Ando J, Tsuchiya M, Kodama T, Noguchi N.Free Radic Biol Med. 2004 Sep 1;37(5):682-94. PMID: 15288125


42.

The involvement of integrin alphavbeta3 in polymorphonuclear leukocyte-induced angiogenesis in bovine aortic endothelial cells.Yasuda M, Ohbayashi M, Ohhinata K, Yamamoto T.Life Sci. 2004 Jun 11;75(4):421-34. PMID: 15147829


43.

Intralumenal tissue-engineered therapeutic stent using endothelial progenitor cell-inoculated hybrid tissue and in vitro performance.Shirota T, Yasui H, Matsuda T.Tissue Eng. 2003 Jun;9(3):473-85. PMID: 12857415


44.

Newly designed compliant hierarchic hybrid vascular graft wrapped with microprocessed elastomeric film–II: Morphogenesis and compliance change upon implantation.He H, Matsuda T.Cell Transplant. 2002;11(1):75-87. PMID: 12095223


45.

Effect of dexamethasone on invasion of human squamous cell carcinoma cells into collagen gel.Hayashido Y, Shirasuna K, Sugiura T, Nakashima M, Matsuya T.Cancer Lett. 1996 Nov 12;108(1):81-6. PMID: 8950213


46.

Serum-free medium conditions for steroidogenesis of bovine follicular thecal cells cultured on collagen gel matrix.Ikeda H.In Vitro Cell Dev Biol. 1990 Feb;26(2):193-200. PMID: 2312503

产品编号 产品名称 产品规格 产品等级
KOU-IPC-30 Atelocollagen, Bovine dermis, 3mg/mL 
去端肽胶原,牛皮来源,3 mg/mL
50ml/btl
KOU-IPC-50 Atelocollagen Bovine dermis 5mg/ml pH3.0 Steril 
去端肽胶原,牛皮来源,5 mg/mL
50ml/btl
KOU-IAC-30 Native collagen Bovine dermis 3mg/ml pH3.0 Steril 
天然胶原,牛皮来源,3 mg/mL
50ml/btl
KOU-IAC-50 Native collagen Bovine dermis 5mg/ml pH3.0 Steril 
天然胶原,牛皮来源,5 mg/mL
50ml/btl

温敏性水凝胶 Mebiol ® Gel

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

可用于3D细胞培养和其他领域温敏性水凝胶                              Mebiol ®  Gel

PNIPAAm-PEG;聚N-异丙基丙烯酰胺和聚乙二醇的嵌段共聚物



  水凝胶具有聚合材料的多种特征,如网络结构和高含水量,目前他广泛的运用于医药生命科学等多种领域,但不仅限于3D培养、组织工程和药物传送这些。聚N-异丙基丙烯酰胺和聚乙二醇的嵌段共聚物早在 2000 年初就已经商业化,研究证明,Mebiol® Gel 的特性使其非常适合应用于细胞培养和组织工程。


温敏性水凝胶                              Mebiol ®  Gel



原理


  Mebiol® Gel 温敏性水凝胶与市面上其它水凝胶的不同之处在于它可以跟随温度变化进行可逆性溶胶-凝胶转换。当温度降低时,Mebiol® Gel 为溶胶状态(像液体),当温度较高时形成水凝胶。在实验操作中,该特性特别有利于进行细胞操作,比如可轻松向冷却的 Mebiol® Gel 中加入培养基,可通过给培养瓶降温的方式进行细胞离心收集。在凝胶状态时,Mebiol Gel 的高亲脂性为细胞增殖、细胞信号转导、气体质量交换以及细胞和组织对剪切力的防御等提供了非常有效的生长环境。



优点、特色


● 易于操作

● 无毒性,生物相容性好

● 100%合成,无病原体

● 透明度高,利于细胞观察

● 性能完善

案例、应用


● 干细胞和多能干细胞培养,增殖和分化

● 3D细胞培养

● 细胞移植

● 器官和组织再生

● 药物传递

● 非细胞培养应用


1. Mebiol® Gel 中培养原发性肿瘤细胞


  选取人肿瘤组织中的原发性肿瘤细胞进行培养该技术能够鉴定来自患者的原发性肿瘤细胞的表征,因此可根据其主要细胞化学敏感性,恶性肿瘤,转移酶活性和其它参数对患者的治疗进行评估。在胶原或者3D凝胶中培养原发性肿瘤细胞,纤维细胞的过度生长可能对其产生抑制作用。而成纤维细胞在Mebiol® Gel 中不容易增殖,因此能选择性增殖原代肿瘤细胞,以便后续进一步分析鉴别。


温敏性水凝胶                              Mebiol ®  Gel

图 1:人体癌变结肠组织Mebiol® Gel 培养 10 天。

(提供者:Dr. S. Kubota, Dept. of General Surgery, St.Marianna University School of Medicine)

  人结肠癌组织在 Mebiol® Gel 培养 10 天。只有原发性肿瘤细胞中 Mebiol® Gel 中增殖。

  成纤维细胞在 Mebiol® Gel 中生长受到抑制,而在胶原蛋白和其它许多3D凝胶培养基质中,长满成纤维细胞,阻止癌细胞的增殖。


温敏性水凝胶                              Mebiol ®  Gel


图2:细胞生长曲线


2.球状体形成


  Mebiol® Gel 可支持肿瘤细胞系和 iPS 细胞形成球体。


温敏性水凝胶                              Mebiol ®  Gel

图4:粘液表皮样癌(胆管癌)衍生细胞系在 Mebiol® Gel 中形成球状体。

(提供者: Dr. S. Kubota, Dept. of General Surgery, St. Marianna University School of Medicine)

3. 保持组织结构


  Mebiol® Gel 提供的环境,有利于维护组织结构在长期培养。


温敏性水凝胶                              Mebiol ®  Gel

图 5

左图:正常结肠黏膜组织在Mebiol® Gel 中培养7天后。

右图:转移性肝癌组织在Mebiol® Gel 中培养 21 天后。

(提供者:Dr. S. Kubota, Dept. of General Surgery, St. Marianna University School of Medicine)

4体干细胞的选择性分离培养(小鼠胚胎皮肤源)


"Epithelial Stem Cells from Dermis by a Three-dimensional Culture System", Journal of Cellular Biochemistry, 98 (1), 174-184 (2006)



5体外3-D软骨细胞培养再生软骨组织


"Chondrocytes Containing Growth Factors in a Novel Thermoreversible Gelation Polymer Scaffold", Tissue Engineering, 12 (5), 1237-1245 (2006)



6体外3-D培养人细胞间质干细胞(hMSC)进行骨诱导


"Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer", Biochem. Biophys. Res. Commun., 317, 1103-1107 (2004).


7人类肝细胞3-D培养生产丙型肝炎病毒(HCV)


"Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b", Virology, 351 (2), 381-392 (2006)



8. 通过局部加热进行通道控制(芯片细胞分选系统)


"On-Chip Cell Sorting System Using Laser-Induced Heating of a Thermoreversible Gelation Polymer to Control Flow", Y. Shirasaki, J. Tanaka, H. Makazu, K. Tashiro, S. Shoji, S. Tsukita, T. Funatsu,Anal. Chem., 78, 695-701 (2006)



更多产品的相关信息查看相关单页:温敏性水凝胶


温敏性水凝胶                              Mebiol ®  Gel 温敏性水凝胶                              Mebiol ®  Gel
  说明书    中文说明书


常见问题  

 

关于 Mebiol Gel 的物理性能问题

 

Q:    当温度高于37℃(或甚至更高,高达60℃),凝胶会发生什么情况?

A:    随着温度升高,凝胶会变得更硬(更凝聚)。

 

Q:    凝胶在2℃〜37℃是什么状态?凝胶变为溶液状态的精确温度是多少?

A:    溶胶 – 凝胶转变温度为 ca.20℃

 

Q:    二氧化碳气体和营养物是如何提供给细胞?他们能在凝胶状态溶入细胞吗?

A:    培养基中的营养和二氧化碳可由凝胶扩散进入细胞。

 

Q:    当 Mebiol Gel®在凝胶状态下,细胞被水凝胶包围。是否有足够的空间供细胞生长?

A:    Mebiol Gel 的交联点是可逆的,即使在凝胶状态(即 37°C)下也一样。周边凝胶可以根据细胞的生长改变形状而没有任何间隙/空间。

 

Q:    收获细胞时(溶液状态),细胞是否会发生损伤?                  

A:    不会

 

Q:    当细胞生长接触到水凝胶边缘时,是否会产生阻力?

A:    不会

 

Q:    可以用 Mebiol Gel®来培养人肺上皮细胞吗?是否有相关研究数据?

A:    我们暂时没有相关研究数据。

 

Q:    在适当温度下 Mebiol Gel® 从溶液转化为凝胶需要多长时间?

A:    3 msec(毫秒)

 

Q:    当温度在 15-25℃ 时,Mebiol Gel® 是怎样一种状态?

A:    当处于转变温度时,溶液和凝胶两种状态同时存在(中间状态)。

 

Q:    凝胶在细胞培养条件下(37℃)的空隙有多大?

A:    非常抱歉,我们没有凝胶的孔隙率的数据,但是下面文章的讨论部分“不同的材料凝胶扩散速度”有相关信息。

          Takao et al., Novel drug delivery system using thermoreversible gelation polymer for malignant glioma Journal of 

          Neuro-Oncology (2005)

          通常当凝胶浓度低,凝胶在材料中的“扩散速度”较高。这意味着当凝胶浓度低时,凝胶的孔隙率也较高。

          然而,当凝胶浓度过低比如5%时,凝胶无法形成。


Q:    0°C-60°C是什么状态?凝胶相可逆的温度范围是?  

A:    0°C-15°C:  Sol 溶液
         15°C-20°C:溶液和凝胶的中间状态
         20°C:溶胶-凝胶转变温度
         高于 20°C:Gel 凝胶
         高于 37°C:随温度升高,凝胶会变得更硬。


Q:    凝胶在 37°C 时的结构强度是多少??

A:    请参考以下文献。
          Yoshioka H et al, A Synthetic Hydrogel with Thermoreversible Galation and Rheological Properties,

          Journal of Macromolecular Science, Part A: Pure and Applied Chemistry Volume 31, Issue 1, 1994 

Q:    水凝胶有孔吗?

A:    水凝胶中没有间隙和孔。

Q:    凝胶能透过 CO2、N2 和 O吗?

A:    能。

Q:    溶胶-凝胶状态可以重复转换多少次?

A:    溶胶-凝胶状态转换可以重复直到 Mebiol 凝胶化学分解。溶胶-凝胶重复转换的极限取决于稀释后的温度或氧浓度。通常情况下,在冰箱能

          定存储1-2个月,长期储存,多孔板中分装的液体保持在-20°C至-80°C。

Q:    营养物分子量多少可以进入凝胶中?扩散距离与分子量的相关性是?

A:    可以在 37℃ 通过凝胶并扩散的最大粒径分子量大约 10,000-90,000(确切大小未知)。分子量的粒径数上千如 1,000-9,000,不存在通过

          凝胶扩散的问题,但大于此数值,则存在问题。 如果分子大小较小,扩散距离将更长。

关于Mebiol Gel细胞兼容问题

 

Q:    当细胞在37℃生长时,我们可以更换培养基吗?

A:    37℃时,凝胶不会在水中大量溶解。因此,你可以使培养基和凝胶分层,然后更换分层后的培养基。

 

Q:    当Mebiol Gel®在凝胶状态下,细胞被水凝胶包围。是否有足够的空间供细胞生长?

A:    Mebiol Gel 的交联点是可逆的,即使在凝胶状态(即 37°C)下也一样。周边凝胶可以根据细胞的生长改变形状而没有任何间隙/空间。

 

Q:    凝胶适合T细胞或MSC细胞的培养吗?

A:    我们没有 Mebiol  gel 培养T细胞的数据;关于 MSC 细胞,请参考以下文章:

          Yuguo Lei et al., PNAS PLUS E5039–E5048 doi: 10.1073/pnas.1309408110

 

Q:    收获细胞时(溶液状态),细胞是否会发生损伤?                  

A:    不会。

 

Q:    当细胞生长接触到水凝胶边缘时,是否会产生阻力?

A:    不会。

 

Q:    Mebiol Gel® 已成功培养的细胞有哪些?

A:    信息请见产品相关参考文献。

 

Q:    Mebiol Gel® 可用于培养肠细胞吗?有没有数据?

A:    我们暂时没有相关研究数据。

 

Q:    Mebiol Gel® 可以用于 FACS(流式细胞仪)吗?凝胶必须在哪种状态?

A:    在溶液状态下(低温),Mebiol Gel® 可以用于 FACS。

 

Q:    Mebiol Gel®可在体内使用吗?它在小鼠体内可以保留多久?

A:    可用于体内(不可用于人)。Mebiol Gel® 以凝胶形式在大鼠脑内保留超过 28 天。您可以参考以下文章,了解更多信息。

          T. Ozeki, K. Hashizawa, D. Kaneko, Y. Imai, H. Okada, “Treatment of rat brain tumors using sustained-release of camptothecin 

          from poly(lactic-co-glycolic acid) microspheres in a thermoreversible hydrogel”, Chem. Pharm. Bull. 58 (9), 1142-1147 (2010)

 

Q:    可以用Mebiol Gel®来培养人肺上皮细胞吗?是否有相关研究数据?

A:    我们暂时没有相关研究数据。

 

Q:    Mebiol Gel®会对某些细胞有毒性吗?如果有,是哪些细胞?

A:    Mebiol Gel® 对细胞无毒性。

 

Q:    是否有 Mebiol Gel® 用于甲状腺细胞(正常或肿瘤)的数据?

A:    有,请参考以下:

          Production of hepatitis C viruses (HCV) by 3-D culture of human hepatocyte cell line・“Production of infectious hepatitis C virus 

          particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b“ Virology, 

          351 (2), 381-392 (2006)"

        

其他问题        

        

Q:    Mebiol Gel® 的有效期是多久? 

A:    生产后约2年有效。

 

Q:    开封使用后,剩余的凝胶可保存多久?

A:    大约可保存1个月,如较长储存,需 -20℃ 或 -80℃ 冷冻。

 

Q:    我对 Mebiol Gel® 很感兴趣,请问能否提供样品试用?

A:    抱歉,我们无法提供 Mebiol Gel® 样品试用。

 

Q:    Mebiol Gel® 如何消毒?在凝胶内可能存在生物活体吗?

A:    通过 EOG 杀菌。在凝胶中不会有任何生物体。

 

Q:    10 ml 和 50 ml 的Mebiol Gel® 产品需要使用何种规格的培养瓶?

A:    分别用T-25 和 T-75 培养瓶

 

Q:    我可以用 20% 凝胶浓度代替 10% 储存吗?我需要将它用于不同类型的培养基。

A:    可以用20%凝胶浓度代替10%储存。但是,请注意,20%的高浓度下,即使是低温,凝胶粘性也非常高,并具有低流动性。

 

Q:    Mebiol Gel® (MBG-PMW20-1001) 可溶于 10 ml 培养基,它可以溶于更大体积的培养基吗?

A:    我们建议您将10 mL 规格的 Mebiol Gel® 溶于 10 mL 培养基中。(同样,使用 50 mL 规格的 Mebiol Gel® 需溶于 50 mL 培养基)

          如果您 Mebiol Gel® 溶液浓度太低,可能无法形成凝胶状态。比如,如果将 10 mL 规格 Mebiol Gel® 溶于 20 mL 培养基,则无法

         形成胶凝。

 

Q:    每只 Mebiol Gel® 含有多少 g 产品?

A:    10 mL 规格, 含 1.0 g Mebiol Gel;50 mL 规格,含 5.0 g Mebiol Gel。

 

Q:    对于 5g(50ml)/瓶的包装,我想将它分成更小的规格,需要如何操作?我不希望用任何的培养基溶解后再分装,只想分装 

         PNIPAAm-PEG本身。然后用不同的培养基溶解分装后的试剂。

A:    理想的情况是将 Mebiol Gel® 在液态下等分,并保存于冰箱中(-80℃)。用普通溶剂(如PBS)溶解 Mebiol Gel®  

         #MBG-PMW20-5005 (5g),然后进行分装。并保存在冰箱中。请准备 5x 浓度的培养基其他成分,按照 4:1 比例添加到分

         装的 Mebiol Gel 中。

 

Q:    Mebiol Gel 粉末能在室温中保存吗?

A:    能。Mebiol Gel 粉末可在室温中保存。

Q:    粉色片剂是什么?

A:    氧气检测剂。与 Mebiol Gel® 一同能提供氧气和水分吸收。它们不是产品的一部分。


细胞培养和组织再生

研究领域

Publication

Pubmed ID (PMID)

干细胞(人类多能干细胞 (hPSC)增殖和分化)

A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.  Lei Y, Schaffer DV. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):E5039-48. doi: 10.1073/pnas.1309408110. Epub 2013 Nov 18.PMID: 24248365

24248365

干细胞(人类多能干细胞(HPSC)线扩建和分化)

An Integrated Miniature Bioprocessing for Personalized Human Induced Pluripotent Stem Cell Expansion and Differentiation into Neural Stem Cells.
Haishuang Lin, Qiang Li, Yuguo Lei
Sci Rep. 2017 Jan 6;7:40191. doi: 10.1038/srep40191

 28057917

干细胞(角膜缘),综述

Towards the use of hydrogels in the treatment of limbal stem cell deficiency Bernice Wright, Shengli Mi, Che  J. Connon Drug Discovery Today, Volume 18, Issues 12, January 2013, Pages 79-86 a

22846850

细胞培养(肾囊肿的形成)

Mxi1 influences cyst formation in three-dimensional cell culture. YJ Yook, KH Yoo, SA Song, MJ Seo, JY Ko, BH Kim, EJ Lee, E Chang, YM Woo, and JH Park BMB Rep, Mar 2012; 45(3): 189-93. 

22449707

基于细胞的ROS测定

Determination of Chronic Inflammatory States in Cancer Patients Using Assay of Reactive Oxygen Species Production by Neutrophils Yoko Suzuki, Satoshi Ohno, Ryuji Okuyama, Atsushi Aruga, Masakazu Yamamoto, Shigeki Miura, Hiroshi Yoshioka, Yuichi Mori, And Katsuhiko Suzuki Anticancer Res, Feb 2012; 32: 565 – 570.ROS Cell-Based Assay

22287746

基于细胞的ROS测定

Effect of Green Tea Extract on Reactive Oxygen Species Produced by Neutrophils from Cancer Patients Katsuhiko Suzuki, Satoshi Ohno, Yoko Suzuki, Yumiko Ohno, Ryuji Okuyama, Atsushi Aruga, Masakazu Yamamoto, Ken-O Ishihara, Tsutomu Nozaki, Shigeki Miura, Hiroshi Yoshioka, And Yuichi Mori Anticancer Res, Jun 2012; 32: 2369 – 2375.

22641677

生物工艺

Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells.
Xiao Huang, Qirui Hu, Yifan Lai, Demosthenes P. Morales, Dennis O. Clegg and Norbert O. Reich
DOI: 10.1002/adma.201603318

27787919

胶质母细胞瘤的抽搐药物发现

Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.
Qiang Li, Haishuang Lin, Ou Wang, Xuefeng Qiu, Srivatsan Kidambi, Loic P. Deleyrolle, Brent A. Reynolds & Yuguo Lei.
Scientific Reports 6, Article number: 31915 (2016)

27549983

骨桥蛋白的生产

A CD153+CD4+ T Follicular Cell Population with Cell-Senescence Features Plays a Crucial Role in Lupus Pathogenesis via Osteopontin Production
Suhail Tahir, Yuji Fukushima, Keiko Sakamoto, Kyosuke Sato, Harumi Fujita, Joe Inoue, Toshimitsu Uede, Yoko Hamazaki, Masakazu Hattori, and Nagahiro Minato
J. Immunol., Jun 2015; 194: 5725 – 5735.

25972477

干细胞(人类多能干细胞 (hPSC)增殖和分化)

Developing Defined and Scalable 3D Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities.
Yuguo Lei, Daeun Jeong, Jifang Xiao, David V. Schaffer
Cell Mol Bioeng. 2014 Jun;7(2):172-183.

25419247

干细胞培养,再生医学

Application of a Thermo-Reversible Gelation Polymer, Mebiol Gel, for Stem Cell Culture and Regenerative Medicine Kataoka K and Huh N*Journal of Stem Cell & Regenerative Medicine 2010 Vol. 6(1): p10-14 (2010)

link

器官培养

FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Hiramatsu R, Harikae K, Tsunekawa N, Kurohmaru M, Matsuo I, Kanai Y. Development. 2010 Jan;137(2):303-12.  doi: 10.1242/dev.040519.

20040496

干细胞(角膜缘)

Ex vivo cultivation of corneal limbal epithelial cells in a thermoreversible polymer (Mebiol Gel) and their transplantation in rabbits: an animal model. G Sitalakshmi, B Sudha, HN Madhavan, S Vinay, S Krishnakumar, Y Mori, H Yoshioka, and S Abraham Tissue Eng Part A, Feb 2009; 15(2): 407-15.

18724830

干细胞(角膜缘)

Limbal Stem Cells: Application in Ocular Biomedicine Review Article Geeta K. Vemuganti, Anees Fatima, Soundarya Lakshmi Madhira, Surendra Basti, Virender S. Sangwan International Review of Cell and Molecular Biology, Volume 275, 2009, Pages 133-181 

19491055

病毒感染/复制系统

3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV Hussein Hassan Aly, Kunitada Shimotohno, Makoto Hijikata Biochemical and Biophysical Research Communications, Volume379, Issue 2, 6 February 2009, Pages 330-334

19103167

胚胎移植培养

Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo.Yamamoto M, Beppu H, Takaoka K, Meno C, Li E, Miyazono K, Hamada H. J Cell Biol. 2009 Jan 26;184(2):323-34. doi: 10.1083/jcb.200808044.  Epub 2009 Jan 19.

19153222

肝细胞移植

Intraperitoneal Transplantation Of Hepatocytes Embedded In Thermoreversible Gelation Polymer (Mebiol Gel) In Acute Liver Failure Rat Model. N. Parveen, A.A. Khan, S. Baskar, M.A. Habeeb, P. Ravindra Babu, A. Samuel, Y. Hiroshi, M. Yuichi, C.M. Habibullah Hepatitis Monthly, Volume 275 8, Issue 4, Autumn, November 2008 Page S71

link

干细胞(间充质)

Chrondrogenic differentiation of human mesenchymal stem cells from umbilical cord blood in chemicially synthesized thermoreversible polymer. Kao, I, et al. Chinese J. Physiology, 51(4), 252-258 (2008)

19112883

肝细胞培养

Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. Hussein H. Aly, Koichi Watashi, Makoto Hijikata, Hiroyasu Kaneko, Yasutugu Takada, Hiroto Egawa, Shinji Uemoto, Kunitada Shimotohno Journal of Hepatology, Volume 46, Issue 1, January 2007, Pages 26-36 

17112629

干细胞(角膜缘)

Cultivation of human corneal limbal stem cells in Mebiol gel–A thermo-reversible gelation polymer. B Sudha, HN Madhavan, G Sitalakshmi, J Malathi, S Krishnakumar, Y Mori, H Yoshioka, and S Abraham Indian J Med Res, Dec 2006; 124(6): 655-64

17287553

组织工程(骨)

In vitro culture of chondrocytes in a novel thermoreversible gelation polymer scaffold containing growth factors. Yasuda A, Kojima K, Tinsley KW, Yoshioka H, Mori Y, Vacanti CA. Tissue Eng. 2006 May;12(5):1237-45.

16771637

干细胞(上皮)

Isolation of epithelial stem cells from dermis by a three-dimensional culture system. Medina RJ, Kataoka K, Takaishi M, Miyazaki M, Huh NH. J Cell Biochem. 2006 May 1;98(1):174-84.

16408300

干细胞(角膜缘)

Comparative Study on Growth Characteristics of Cadaveric Human Corneal Limbal Stem Cells in Mebiol Gel (a Synthetic Polymer) and on Human Amniotic Membrane. H.N. Madhavan, B. Sudha1, G. Sitalakshmi, S. KrishnaKumar, Y. Mori, H. Yoshioka and S. Abraham.Invest Ophthalmol Vis Sci 2006;47: E-Abstract 3033. 3033B186

组织再生(肝)

Thermoreversible gelation polymer induces the emergence of hepatic stem cells in the partially injured rat liver. Nagaya M, Kubota S, Suzuki N, Akashi K, Mitaka T.Hepatology. 2006 May;43(5):1053-62.

16628635

病毒增殖和药物筛选

Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b.Murakami K, Ishii K, Ishihara Y, Yoshizaki S, Tanaka K, Gotoh Y, Aizaki H, Kohara M, Yoshioka H, Mori Y, Manabe N, Shoji I, Sata T, Bartenschlager R, Matsuura Y,  Miyamura T, Suzuki T.Virology. 2006 Aug 1;351(2):381-92. Epub 2006 May 6.

16678876

胚胎培养

Canonical Wnt Signaling and Its Antagonist Regulate Anterior-Posterior Axis Polarization by Guiding Cell Migration in Mouse Visceral Endoderm. Chiharu Kimura-Yoshida, Hiroshi Nakano, Daiji Okamura, Kazuki Nakao, Shigenobu Yonemura, Jose A. Belo, Shinichi Aizawa, Yasuhisa Matsui, Isao Matsuo Developmental Cell, Volume 9, Issue 5, November 2005, Pages 639-650

16256739

细胞在Mebiol Gel中的生长评估

H.N. Madhavan, J. Malathi, Patricia Rinku Joseph, Mori Yuichi, Samuel JK Abraham and Hiroshi Yoshioka. A  study on the growth of continuous culture cell lines embedded in Mebiol Gel., Current Science, 87(9), 1275~77(2004).

干细胞培养和分化

Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer. Hishikawa K, Miura S, Marumo T, Yoshioka H, Mori Y, Takato T, Fujita T. Biochem Biophys Res Commun. 2004 May 14;317(4):1103-7.

15094382

肝再生

Evaluation of Thermoreversible gelation polymer for Regeneration of Focal Liver Injury. M. Nagaya, S.  Kubota, N. Suzuki, M. Tadakoro, K. Akashi. Eur Surg Res, 36:95-103 (2004).

15007262

球状培养(肿瘤)

S. Tsukikawa, H. Matsuoka, Y. Kurahashi, Y. Konno, K. Satoh, R. Satoh, A. Isogai, K. Kimura, Y. Watanabe, S. Nakano, J. Hayashi, and S. Kubota. A new method to prepare multicellular spheroids in cancer cell lines using a thermo-reversible gelation polymer, Artifcial Organs, 27(7), 598 -604(2003).

12823414

伤口康复

Wound Dressing of Newly Developed Thermo gelling Thermo reversible Hydro gel. H. Yoshioka, Y. Mori, S. Kubota , Jpn J Artif Organs, 27(2), 503 -506 (1998).(Japanese Publication- Abstract in English)

胰岛移植

In Vitro Studies on a New Method for Islet Micro encapsulation Using a Thermo reversible Gelation Polymer, N-Isopropylacrylamide-Based Copolymer. S. Shimizu, M. Yamazaki, S. Kubota, T. Ozasa, H. Moriya, K. Kobayashi, M. Mikami, Y. Mori and S. Yamaguchi. Artif Organs, Vol. 20, No.11 (1996).

8908335

Mebiol Gel应用——非细胞培养

研究领域

Publication

Pubmed ID (PMID)

蛋白质结晶支架

A Novel Approach for Protein Crystallization by a Synthetic Hydrogel with Thermoreversible Gelation Polymer. Sugiyama, et al., Cryst. Growth Des., 2013, 13(5), pp 1899-1904

link

DNA电泳和修复支架

Separation and recovery of DNA fragments by electrophoresis through a thermoreversible hydrogel composed of poly (ethylene oxide) and poly (propylene oxide). Yoshioka H, Mori Y, Shimizu M. Anal Biochem. 2003 Dec 15;323(2):218-23.

14656528

细胞分选

On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Shirasaki Y, Tanaka J, Makazu H, Tashiro K, Shoji S, Tsukita S, Funatsu T. Anal  Chem. 2006 Feb 1;78(3):695-701.

16448041

细胞分选

Microfluidic cell sorter with flow switching triggered by a solgel transition of a thermo-reversible gelation polymer.Kazuto Ozaki, Hirokazu Sugino, Yoshitaka Shirasaki, Tokihiko Aoki, Takahiro Arakawa, Takashi Funatsu, Shuichi Shoji Sensors and Actuators B: Chemical, Volume 150, Issue 1, 21 September 2010, Pages 449-455

link

DNA分子分选

Microfluidic active sorting of DNA molecules labeled with single quantum dots using flow switching by a hydrogel solgel transition. Mai Haneoka, Yoshitaka Shirasaki, Hirokazu Sugino, Tokihiko Aoki, Takahiro Arakawa, Kazuto Ozaki, Dong Hyun Yoon, Noriyuki Ishii, Ryo Iizuka, Shuichi Shoji, Takashi FunatsuSensors and Actuators B: Chemical, Volume 159, Issue 1, 28 November 2011, Pages 314-320

link

药物输送

Novel drug delivery system using thermoreversible gelation polymer for malignant glioma.Arai T, Joki T,  Akiyama M, Agawa M, Mori Y, Yoshioka H, Abe T. J Neurooncol. 2006 Mar;77(1):9-15.

16292493

药物输送

Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes.Arai T, Benny O, Joki T, Menon LG, Machluf M, Abe T, Carroll RS, Black PM.Anticancer Res. 2010 Apr;30(4):1057-64.

20530409

细胞分选开关

On-Chip Cell Sorting System Using Thermoreversible Gelation Polymer.
Yoshitaka Shirasaki, Hirokazu Sugino, Masayasu Tatsuoka, Jun Mizuno, Shuichi Shoji, and Takashi Funatsu
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 2, MARCH/APRIL 2007 PMID: –

细胞培养药物筛选

Alternatives to Animal Testing and Experimentation Wakui et al. in vitro Thermoreversible Gel Disc Quantitative Assay of Rat Angiogenesis. AATEX16(2), 59-65, 2011

link

Mebiol Gel 物理特性

研究领域

Publication

Pubmed ID (PMID)

物理特性

A synthetic hydrogel with thermoreversible gelation. II. : Effect of added salts. H. Yoshioka, M. Mikami, Y. Mori, and E. Tsuchida. J. Macromol. Sci., A31(1), 121-125 (1994).

link

物理特性

Thermoreversible gelation on heating and on cooling of an aqueous gelatin-poly(N-isopropylacrylamide) conjugate. , H. Yoshioka, Y. Mori, S. Tsukikawa, and S. Kubota, Polym. Adv. Tech., 9, 155-158 (1998).

link

物理特性

A Synthetic hydrogel with thermoreversible gelation. I. Preparation and rheological properties , H.  Yoshioka, M. Mikami and Y. Mori. J.M.S- Pure Appl. Chem., A31(1), pp. 113-120 (1994).

link

物理特性

Preparation of Poly (N-Isopropylacrylamide)-b-Poly(Ethylene Glycol) and Calorimetric Analysis of its Aqueous Solution , H. Yoshioka, M. Mikami and Y. Mori,J.M.S- Pure Appl. Chem., A31(1), pp. 109-112 (1994).

link

物理特性

Endovascular treatment of experimental aneurysms using a combination of thermoreversible gelation polymer and protection devices: feasibility study.
H. Takao, Y. Murayama, T. Saguchi, T. Ishibashi, M. Ebara, K. Irie, H. Yoshioka,Y. Mori, S. Ohtsubo, F. Vin~uela, T. Abe
Neurosurgery. 2009 Sep;65(3):601-9; discussion 609.

19687707

物理特性

Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel.
Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N.
Biofabrication

20811123

物理特性

A synthetic hydrogel with thermoreversible gelation. III. : An NMR study of the Sol-Gel transition. H.  Yoshioka, Y. Mori and James A. Cushman. Polym. Adv. Tech., 5, pp. 122-127 (1994).

link

关节软骨修复

Arumugam S , Bhupesh Karthik B , Chinnuswami R , et al. Transplantation of autologous chondrocytes ex-vivo expanded using Thermoreversible Gelation Polymer in a rabbit model of articular cartilage defect[J]. Journal of Orthopaedics, 2017, 14(2):223-225.

28203047

产品编号 产品名称 产品规格 产品等级
MBG-PMW20-1001 Mebiol ®  Gel 
温敏性水凝胶
1×10 mL
MBG-PMW20-1005 Mebiol ®  Gel 
温敏性水凝胶
5×10 mL
MBG-PMW20-5001 Mebiol ®  Gel 
温敏性水凝胶
1×50 mL
MBG-PMW20-5005 Mebiol ®  Gel 
温敏性水凝胶
5×50 mL