UBF (F-9)抗体 UBF (F-9)

UBF (F-9)抗体

UBF (F-9)

详细描述:
The transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with the growth state of the cell. In addition to Pol I, transcription of ribosomal genes requires the trans-activating factor UBF (upstream binding factor). UBF f

应用范围:WB, IP, IF, IHC(P), ELISA; 反应种属:m, r, h; Isotype:mouse monoclonal IgG1; 标记:无标记。

货号 产品名称 品牌 购买
货号 名称 单位 购买
sc-13125 UBF (F-9)抗体 200 µg/ml 咨询客服
sc-13125 X UBF (F-9)抗体 200 µg/0.1 ml 咨询客服

PALL(颇尔)磁性过滤漏斗

详细介绍

PALL(颇尔)磁性过滤漏斗

是zui常用的一款可换膜过滤漏斗,使用非常方便!

对应产品货号:4241 4247 4238 4242 

47 mm 磁性过滤漏斗订购信息:

货号

说明

包装

4247

150 ml

1个/包装

4242

300 ml

1个/包装

4241

300 ml,有盖

1个/包装

4238

500 ml

1个/包装

  PALL(颇尔)磁性过滤漏斗  出售未经灭菌,可进行多次高压灭菌*,121 – 123 °C (250 -253 °F),1.0 bar (100 kPa,15 psi) ,15-20

注意事项:

      *重复使用含有聚乙氧基烷基酚和酒精,和/或防腐蚀、防结垢锅炉添加剂的清洁剂,可能导致聚苯砜破裂,从而缩短产品的使用寿命。不要对橡胶塞进行高压灭菌。不要使用铝箔进行高压灭菌,应使用高压灭菌纸。请咨询Pall公司技术服务部是否使用薄膜,如磁轨侵蚀材料。
 

备件:

货号

说明

包装

4235

不锈钢支架筛

1个/包装

87264

聚苯砜支架筛

1个/包装

4244

底座,无支架筛

1个/包装

4246

盖(仅用于300 ml漏斗)

1个/包装

4248

150 ml 漏斗外壳

1个/包装

4243

300 ml 漏斗外壳

1个/包装

4254

500 ml 漏斗外壳

1个/包装

         独特的磁性密封便于单手进行液体真空过滤

       无泄漏磁性允许单手操作。

        聚苯砜结构与防起沫试剂和其它很多溶剂相兼容。

        方便。150 ml尺寸易于插入小型高压灭菌器;500ml尺寸很适合过滤大量样品。

       坚固而安全。聚苯砜结构耐用而安全,比绝大多数玻璃漏斗便宜;

        用镊子很容易取回膜。

       标有刻度,增量为50ml。

应用 

用于MF技术。

城市水处理测试。

 地表水分析。

工厂工艺用水测试。

饮用水分析。

规格:

结构材料

漏斗主体、杆、盖:聚苯砜

通气孔塞:聚丙烯

支架筛:聚醚砜

规格尺寸总高:150 ml:17.8 cm (7.0 in.)
300 ml:22.9 cm (9 in.)
500 ml:19.6 cm (7.7 in.)

有效过滤面积:150、300 ml:9.6 cm2,35 mm有效直径

                        500 ml:13.1 cm2,41 mm有效直径

zui大直径: 150 ml、300 ml:7.6 cm (3 in.)
500 ml:8.9 cm (3.5 in.)

过滤器尺寸:可纳47 mm过滤器

漏斗容积:150、300 或500 ml

出口连接:漏斗杆适合标准的单孔塞。

zui大操作温度:受限于过滤器,或121 °C (250 °F)

灭菌

分钟;可进行紫外线灭菌

anti-CD48 (human), mAb (5-4.8) 白细胞分化抗原48 (人), 单克隆抗体 (5-4.8) 品牌:Ancell


品牌:Ancell
CAS No.:
储存条件:+4°C
纯度:
产品编号

(生产商编号)

等级 规格 运输包装 零售价(RMB) 库存情况 参考值

ANC-199-020

100 µg 2,600.00


* 干冰运输、大包装及大批量的产品需酌情添加运输费用


* 零售价、促销产品折扣、运输费用、库存情况、产品及包装规格可能因各种原因有所变动,恕不另行通知,确切详情请联系上海金畔生物科技有限公司。

产品描述相关资料下载相关产品浏览记录 请联系客服

PROTEOSTAT® Aggresome detection kit 蛋白聚集小体检测试剂盒

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

蛋白聚集小体检测试剂盒PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

PROTEOSTAT® Aggresome detection kit

 


◆原理


PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

聚集小体(Aggresome)是由一群不正常堆叠在一起的蛋白质所形成的包涵体(Inclusion Bodies)。聚集小体的出现往往也表明细胞正处于某种应激状态,比如高温、病毒感染、活性氧自由基攻击等。聚集体通常是响应细胞应激而形成,并通过分离错误折叠的蛋白质提供细胞保护机制,最终导致它们被自噬清除。此外,蛋白质聚集体的形成是多种人类疾病的标志,例如阿尔茨海默氏症、帕金森氏症、肌萎缩侧索硬化症或酒精性肝病。

PROTEOSTAT® Aggresome detection kit中包含的 PROTEOSTAT® 是一种分子转子染料,在溶液中沿着单个中心键的自由分子内旋转可防止荧光产生。当它特异地插入到错误折叠和聚集的蛋白中的交叉β-sheet四级结构中,旋转受到抑制并导致发出强烈的荧光。

PROTEOSTAT® 聚集小体检测试剂盒提供了一种快速、特异、定量的方法来标记细胞中的聚集小体,且无需进行人工蛋白定点突变。PROTEOSTAT® 染料已在广泛的条件下对多种小分子调节剂进行验证,适用于具有治疗价值的化学物的筛选。此外,本试剂盒还适用于多重免疫荧光,以在自噬和聚集体形成的背景下研究您的目标分子。

◆试剂盒组成

组分

包装

PROTEOSTAT® Aggresome Detection Reagent

10 μL

Hoechst 33342 Nuclear Stain

50 μL

Proteasome Inhibitor (MG-132)

120 nM

10×Assay Buffer

25 mL

 ◆特点


● 提供基于细胞的灵敏的药物反应性测定,以在真实的细胞环境中识别与神经退行性疾病相关的抑制剂

● 可靠且简单的检测,不需要非生理性蛋白质突变或基因工程细胞系

● 作用条件广泛,适用于筛选具有潜在治疗价值的小分子化合物

● 已进行优化以兼容免疫染色

● 可通过流式细胞术轻松量化聚集体和相关包涵体

● 可用于神经退行性疾病、肝病、毒理学研究等的研究 

 ◆案例・应用

 

■ 应用实例 1:流式细胞术检测聚集小体

PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

流式细胞术的分析:Jurkat细胞在37°C下用 0.2% DMSO对照或用5 µM MG-132诱导过夜。处理后,将细胞固定并与PROTEOSTAT® 染料一起孵育,无需洗涤即通过流式细胞术在FL3通道中使用488 nm激光进行分析。在 MG-132处理的细胞中,红色荧光信号增加约3倍。所描述的测定允许评估蛋白质聚集的影响。



■ 应用实例 2:PROTEOSTAT® 染料与荧光染料的应用


PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒


荧光显微镜:含有蛋白聚集体的HeLa细胞,用 5 µM MG-132蛋白酶体抑制剂(右)处理12小时,通过 PROTEOSTAT®(红色)检测并用Hoechst 33342复染。左侧的为未经处理的对照。



PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒


荧光显微镜:含有蛋白聚集体的HeLa细胞,用 5μM MG-132蛋白酶体抑制剂处理12小时,通过PROTEOSTAT® 聚集体染料(左上)检测,显示与荧光素-p62抗体(右上)和复合图像(中下)的共定位



■ 应用实例 3:不同搅拌速率对蛋白聚集的影响

PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

使用本产品检测后,可知搅拌速度越快,蛋白聚集程度越大。

■ 应用实例 4蛋氨酸氧化可抑制蛋白聚集

PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

蓝色曲线为对照,没有搅拌;在搅拌速度在300 rpm下, 绿色曲线与红色曲线分别表示蛋氨酸被氧化后的蛋白聚集情况。

使用本产品检测后,可知蛋氨酸被氧化后可抑制蛋白聚集。

■ 应用实例 5 内质网应激相关细胞自噬产生蛋白聚集小体

PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

分别25,50,75 mmCQ,100 nM的thapsigargin(TG)或5mM的MG-132处理K562细胞24小时。然后在温室下用PROTEOSTAT® (1:10,000)固定并透化细胞30min。接着在BD流式细胞仪LSR II的蓝色610/20 nm的通道分析细胞(30,000)。

图片来源:Courtesy of the Flow Cytometry Core Facility, Blizard Institute, Queen Mary University of London, London, UK.

■ 应用实例 6

PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

K562 细胞分别使用Thapsigargin (Tg, 0.1 µM)、25、50 和 75 µM 氯喹 (CQ) 用试剂处理以诱导内质网应激和不完全自噬 24 h。使用蛋白酶体抑制剂 MG-132 (5 µM) 作为阳性对照处理24 h。将沉淀的细胞固定并透化。然后,根据制造商的说明,使用 300 µL PROTEOSTAT® 和 1 µg/mL DAPI(用于细胞周期测定)在室温下标记细胞30min。确定每个处理的S期的 Aggresome 倾向因子 (APF) 高于G1和高于S期的G2m的相对增加,并与对照值进行比较。与对照组相比,ER 应激诱导剂、Tg 和 50 µM CQ在S期比G1更能引起蛋白聚集体上调,但蛋白酶体抑制剂 MG-132 和 50 µM CQ 在 G2m 期比S期更显著地下调聚集体。

图片来源:Courtesy of the Flow Cytometry Core Facility, Blizard Institute, Queen Mary University of London, London, UK.

PROTEOSTAT® Aggresome detection kit                              蛋白聚集小体检测试剂盒

PROTEOSTAT® Aggresome Detection Kit

PROTEOSTAT® 蛋白聚集检测试剂盒 Q&A


1.Q: PROTEOSTAT® 热稳定检测试剂盒(ENZ-51027),蛋白聚集检测试剂盒(ENZ-51023)

1.Q: PROTEOSTAT® 蛋白聚集检测试剂盒(ENZ-51035)的区别?

1.A: 1)PROTEOSTAT®染料属于分子轮子染料(molecular rotor dye)。在溶液状态不发荧光(由于在中心的碳-碳单键周围的自由转动,

                    分离了探针的不同芳香部分)。由于分子轮子染料接触到蛋白聚集体后,会封闭进入原纤维,形成β折叠,具有高强度荧光。类似于

                    染核酸碱基的EB 一样。

1.A: 2)PROTEOSTAT® 热稳定检测试剂盒(ENZ-51027)用于直接监测热诱导蛋白变性引起的蛋白聚集,不检测蛋白非折叠而暴露的疏

                    部分。该试剂盒用于检测蛋白缓冲液,其他添加成分对蛋白稳定性的影响,在特定条件下多少温度时蛋白会聚集。

1. A 3)蛋白聚集检测试剂盒(ENZ-51023)用于检测液体状蛋白或者多肽形成聚集的情况。可用于确认蛋白保存的最优形态,筛选促进或

                    者抑制蛋白聚集的试剂,检测分子伴侣的活性。与标准品或者已知浓度样品一起使用,可定量检测蛋白聚集。

1. A 4)PROTEOSTAT® 蛋白聚集检测试剂盒(ENZ-51035)检测变性蛋白,包括活细胞内聚集体或者聚集体样包涵体。PROTEOSTAT® 

                    蛋白聚集检测染料在聚集小体形成时,接触到聚集蛋白时会变的更明亮,可用流式或者荧光显微镜检测。


2.Q: 使用ENZ-51035 时,是否可以终止并在在40℃过夜保存,第二天继续实验?

  A: 建议可以在加染料前终止。荧光强度在液体中会成倍降低。而且染料与蛋白长时间孵育后,会影响蛋白聚集。


3.Q: 阳性对照染色不好。

  A: 染料没有避光保存。染色时候没有避光,需要染色后立即检测。聚集蛋白不是液体。延长离心会使聚集蛋白沉淀。不要离心聚集蛋

                白(样品或者对照)。


4.Q: 蛋白信号饱和。

  A: 蛋白样品的浓度很高。用1×Assay Buffer 稀释样品。


5.Q: 阴性对照观察到高荧光强度。

  A: 样品含有干扰物质。该试剂可以与常规使用的缓冲液(PBS,Tris,HEPES)和赋形剂(海藻糖和蔗糖)使用,不过不要使用高浓度的吐温 

                20(比如:0.2%)


6.Q: 蛋白与PROTEOSTAT® 检测试剂结合是否是可逆的?

  A: PROTEOSTAT® 检测试剂与聚集蛋白的相互作用是非供价结合。所以,理论上是可逆的。但是我们没有尝试将染料从样品中去除。


7.Q: 在药物应激检测中,细胞是否可以经胰酶消化后去检测细胞中的蛋白聚集?

  A: 胰酶可以与PROTEOSTAT® 聚集检测试剂盒配套使用。细胞消化后,表面活性剂加入给细胞打孔。更大的聚集体仍然是不溶的,可

                以通过离心沉淀。小的聚集体通过超滤分离。表面活性剂,膜和可溶蛋白可洗掉,PROTEOSTAT® 检测试剂可用于残留蛋白。


8.Q: 在研究细胞蛋白聚集时,如何设置阳性对照?

  A: MG 132 处理的细胞可作为阳性对照。


9.Q: 细胞裂解液是否可用PROTEOSTAT® 蛋白聚集检测试剂检测?

  A: 检测细胞裂解液是有挑战的,表面活性剂会引起高背景。可以过滤去除表面活性剂。更大的聚集体仍然是不可溶的,可以通过

                离心沉淀。小的聚集体通过超滤分离。表面活性剂,膜和可溶蛋白可洗掉,PROTEOSTAT® 检测试剂可用于残留蛋白。


10.Q:   PROTEOSTAT® 染料是否可以检测~300kDa 的蛋白二聚体?

   A: PROTEOSTAT® 可以检测从单体到二聚体转变的蛋白,结合分子筛层析法。但是信号会变的更强烈,因为聚集体更大。


11.Q: 如果样品稀释到低浓度(比如0.5mg/mL)是否会改变聚集蛋白的百分比含量?

   A: 聚集蛋白的百分比(聚集蛋白占总蛋白的比例)将保持不变。聚集蛋白的浓度会降低,信号也会减弱。

   A: 如果用未聚集蛋白稀释样品,聚体蛋白的百分比会变化。


12.Q: PROTEOSTAT® 试剂盒是否可用于研究原核细胞样品的蛋白聚集?

   A: 如果膜部分去除的话,是可以检测原核细胞的。如果膜没有分离,染料会聚集在膜上,引起高背景值。


13.Q: PROTEOSTAT® 是否可检测革兰氏阴性菌的蛋白聚集?

   A: 革兰氏阴性菌外层膜的脂多糖会影响。操作手册中提到的打孔缓冲液将移除大多数细菌的内层膜,破坏革兰氏阴性菌的外层膜。所以

                   可以观察革兰氏阴性菌的聚集和包涵体。


14.Q:   当其他蛋白共染时,如何优化减少FITC 发射过滤装置的信号?

   A: 染料的激发和发射光谱见操作手册P8。光谱显示会与FITC 有些重叠。FITC 可以与该染料一起使用,用488nm激发波长和515nm 发

                   射波长。如果FITC 有荧光的话就会起作用。否则,PROTEOSTAT® 染料会有溢出。建立设立一个不带有FITC 标记的抗体作为对照。

                   另外,可用Cy5 或者Coumarin 标记的抗体解决这个问题。

1.

A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems: S. Navarro, et al.; Eur. J. Med. Chem. (2015), Application(s): Confocal microscopy, Abstract;


2.

Amyloidogenic lysozymes accumulate in the endoplasmic reticulum accompanied by the augmentation of ER stress signals: Y. Kamada, et al.; Biochim. Biophys. Acta 1850, 1107 (2015), Application(s): Microscopy, Abstract;

Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy: Y. Sasazawa, et al.; J. Biol. Chem. 290, 6168 (2015), Abstract;


3.

Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice: Y. Yamada, et al.; Lab. Invest. 95, 625 (2015), Application(s):Aggresome detection by fluorescence microscopy in fibroblasts, Abstract;


4.

Defective autophagy is a key feature of cerebral cavernous malformations: S. Marchi, et al.; EMBO Mol. Med. 7, 1403 (2015), Application(s): Aggresome detection in aggregated proteins and aggresome‐like inclusion bodies in fixed and permeabilized samples,AbstractFull Text

5.

Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death: A.L. Mahul-Mellier, et al.; Cell Death Differ. 22, 2107 (2015), Abstract;


6.

In vitro administration of gold nanoparticles functionalized with MUC-1 protein fragment generates anticancer vaccine response via macrophage activation and polarization mechanism: T. Mocan, et al.; J. Cancer 6, 583 (2015), Application(s): Aggresome detection by fluorescence microscopy in peritoneal macrophages, AbstractFull Text

7.

Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer: M.I. Koukourakis, et al.; Biochem. Biophys. Res. Commun. 461, 268 (2015),Application(s): Fluorescence microscopy , Abstract;

Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy: T.P. Miettinen, et al.; Cell Rep. 13, 2610 (2015), Application(s): Flow cytometry analysis of protein aggregation using Jurkat, U2OS, Kc167 and HUVEC cells, Abstract;


8.

MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib: S. Jagannathan, et al.; Leukemia 29, 727 (2015), Application(s): Detection of protein aggregates by fluorescence microscopy in multiple myeloma cell lines, Abstract; Full Text

9.

Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma: M.A. Abdel Malek, et al.; Oncotarget 6, 3098 (2015), Application(s): Confocal Microscopy, AbstractFull Text

10.

Monitoring of dipeptidyl peptidase-IV (DPP-IV) activity in patients with mucopolysaccharidoses types I and II on enzyme replacement therapy – Results of a pilot study: K. Hetmanczyk, et al.; Clin. Biochem. (2015), Application(s): Plasma DPP-IV enzyme assay, Abstract;


11.

Pressure overload-induced cardiac dysfunction in aged male adiponectin knockout mice is associated with autophagy deficiency: J.W. Jahng, et al.; Endocrinology 156, 1667 (2015),Abstract;

Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses: C.Y. Wang, et al.; Mol. Cell. Biol.35, 1712 (2015), Abstract;

Schwann cells contribute to neurodegeneration in transthyretin amyloidosis: T. Murakami, et al.; J. Neurochem. 134, 66 (2015), Abstract;


12.

Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress: H.W. Chiu, et al.; Nanoscale 7, 736 (2014), Abstract;

Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen: S.M. Usmani, et al.; Nat. Commun. 5, 3508 (2014), Application: Amyloid detection in semen,Abstract;


13.

Distinct patterns of HSP30 and HSP70 degradation in Xenopus laevis A6 cells recovering from thermal stress: S. Khan, et al.; Comp. Biochem. Physiol. A Mol. Integr. Physiol. 168, 1 (2014), Application(s): Detection of aggresomes in Xenopus laevis cells using fluorescence microscopy, Abstract;

Dynein function and protein clearance changes in tumor cells induced by a kunitz-type molecule, amblyomin-x: M.T. Pacheco, et al.; PLoS One 9, e111907 (2014), Application(s):Detection of aggresomes by flow cytometry, AbstractFull Text

14.

Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication: A. Flierl, et al.; PLoS One 9, e112413 (2014), Application(s):Detection of protein aggregates by fluorescence microscopy and flow cytometry in neuronal precursor cells, AbstractFull Text

15.

Human stefin B role in cell's response to misfolded proteins and autophagy: M. Polajnar, et al.; PLoS One 9, e102500 (2014), Application(s): Detection of protein aggregates in primary astrocytes, AbstractFull Text

16.

Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells: E. Wolmarans, et al.; Cell Mol. Biol. Lett. 19, 98 (2014), Abstract;


17.

Preconditioning stimulus of proteasome inhibitor enhances aggresome formation and autophagy in differentiated SH-SY5Y cells: Y. Bang, et al.; Neurosci. Lett. 566, 263 (2014),Abstract;


18.

 Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development: Y.J. Yi, et al.; Reprod. Fertil. Dev. (2014), Application(s): Detection of protein aggregates in oocytes, Abstract;


19.

Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination: C.E. Kennedy, et al.; Mol. Reprod. Dev. 81, 436 (2014), Abstract;

Serine/threonine kinase 16 and MAL2 regulate constitutive secretion of soluble cargo in hepatic cells: J.G. In, et al.; Biochem. J. 463, 201 (2014), Abstract;


20.

SGTA regulates the cytosolic quality control of hydrophobic substrates: L. Wunderley, et al.; J. Cell. Sci. 127, 4728 (2014), Application(s): Dual staining with ProteoStat® dye, Abstract;Full Text

21.

T he small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells: M. Hamouda, et al.; Oncotarget 5, 6252 (2014), Application(s): Analysis of velcade resistant multiple myeloma human cells by WB, Assay, AbstractFull Text

22.

Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules: M.U. Cheema, et al.; Physiol. Rep. 1, e00064 (2013), Application(s): Labeling of kidney homogenates, labeled particles sorted by flow cytometry and identification by LC-MS/MS ,AbstractFull Text

23.

Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death: P. Magnaghi, et al.; Nat. Chem. Biol. 9, 548 (2013), Application(s): Detection of aggresomes in human colon carcinoma HCT116 cells using fluorescence microscopy, Abstract;


24.

Environmental stresses induce misfolded protein aggregation in plant cells in a microtubule-dependent manner: Y. Nakajima, et al.; Int. J. Mol. Sci. 14, 7771 (2013),Application(s): Detection of aggresomes using fluorescence microscopy, AbstractFull Text

25.

In vitro changes in mitochondrial potential, aggresome formation and caspase activity by a novel 17-β-estradiol analogue in breast adenocarcinoma cells: D.S. Nkandeu, et al.; Cell. Biochem. Funct. 31, 566 (2013), Abstract;

Increased generation of cyclopentenone prostaglandins after brain ischemia and their role in aggregation of ubiquitinated proteins in neurons: H. Liu, et al.; Neurotox. Res. 24, 191 (2013), Abstract;

26.

Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells: S. Moriya, et al.; Int. J. Oncol.42, 1541 (2013), Application(s): Detection of aggresomes using flow cytometry, Abstract;Full Text

27.

Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2: Y. Maejima, et al.; Nat. Med. 19, 1478 (2013), Application(s): Detection of aggresomes in mouse heart sections using fluorescence microscopy, AbstractFull Text

28.

N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions: B. Jeric, et al.; Biochim. Biophys. Acta 1833, 2254 (2013), Application(s):Detection of aggresomes using fluorescence microscopy, Abstract;


29.

The ubiquitin proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic beta cells: A. Hofmeister-Brix, et al.; Biochem. J. 456, 173 (2013),AbstractFull Text

30.

VCP Phosphorylation-Dependent Interaction Partners Prevent Apoptosis in Helicobacter pylori-Infected Gastric Epithelial Cells: C.C. Yu, et al.; PLoS One 8, e55724 (2013),Application(s): Aggresome detection in AGS human gastric epithelial cells, AbstractFull Text

31.

Zerumbone, an electrophilic sesquiterpene, induces cellular proteo-stress leading to activation of ubiquitin-proteasome system and autophagy: K. Ohnishi, et al.; BBRC 430, 616 (2013), Application(s): Aggresome detection in mouse hepatocytes, Abstract;


32.

Autophagy in idiopathic pulmonary fibrosis: A.S. Patel, et al.; PLoS One 7, e41394 (2012),Application(s): Detection of aggresomes in lung tissue sections using fluorescence microscopy, AbstractFull Text

33.

Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities: U. Tomaru, et al.; Am. J. Pathol. 180, 963 (2012),Abstract;


34.

Mutations in the area composita protein αT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy: J. van Hengel, et al.; Eur. Heart J. 34, 201 (2012),Abstract;


35.

Quantitative analysis of α-synuclein solubility in living cells using split GFP complementation: A. Kothawala, et al.; PLoS One 7, e43505 (2012), Application(s):Aggresome detection in HeLa cells, AbstractFull Text

36.

Multiple aggregates and aggresomes of C-terminal truncated human αA-crystallins in mammalian cells and protection by αB-crystallin: I. Raju, et al.; PLoS One 6, e19876 (2011), Application(s): Aggresome detection in HeLa cells, AbstractFull Text

37.

Novel Cell- and Tissue-Based Assays for Detecting Misfolded and Aggregated Protein Accumulation Within Aggresomes and Inclusion Bodies: D. Shen, et al.; Cell Biochem. Biophys. 60, 173 (2011), AbstractFull Text

38.

Inhibitors of protein aggregation and toxicity: H. Amijee, et al.; Biochem. Soc. Trans. 37, 692 (2009), AbstractFull Text

39.

Autophagy-mediated clearance of aggresomes is not a universal phenomenon: E. Wong, et al.; Hum. Mol. Genet. 17, 2570 (2008), AbstractFull Text

40.

Chemical and biological approaches synergize to ameliorate protein-folding diseases: T.W. Mu, et al. ; Cell 134, 769 (2008), AbstractFull Text

41.

Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells: Y. Murakawa, et al.; Cancer Res. 67, 8536 (2007), Abstract;


42.

p62SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death: G. Bjørkøy, et al.; J.Cell Biol. 171, 603 (2005), Full Text

43.

Therapeutic effects of cystamine in a murine model of Huntington's disease: A. Dedeoglu, et al.; J. Neurosci. 22, 8942 (2002), Full Text

产品编号 产品名称 产品规格 产品等级
ENZ-51035-K100 PROTEOSTAT® Aggresome detection kit 
PROTEOSTAT®蛋白聚集小体检测试剂盒
100 tests
ENZ-51035-0025 PROTEOSTAT® Aggresome detection kit 
PROTEOSTAT® 蛋白聚集小体检测试剂盒
25 tests

溶酶体细胞毒理检测试剂盒 Lyso-ID® Red cytotoxicity kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

溶酶体积聚检测试剂盒溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit

 

 

◆原理

 

Lyso-ID® Red cytotoxicity kit 阳离子两亲性示踪剂(CAT)的染料,其以类似诱导磷脂药物的方式迅速分到细胞中。通过在探头(染料)上放置可滴定基团,形成此示踪。使标记物扩展到用弱碱性细胞穿透物化合物预处理的细胞层状包涵体,如抗疟药氯喹。此外,溶酶体本身探头可用于突出溶酶体样细胞器,前提是其中的细胞产生包含大多数降解酶的溶酶体,非酸性母体细胞器的空泡可以监测溶酶体降解功能的失常,使用药物类的阳离子示踪染料选择性地快速染色酸性细胞器,可用于监控活细胞内溶酶体的积聚和溶酶体样结构。可用于体外毒理学和临床前药物安全评估。

溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit

◆优点特色

 

  ● 包括迅速区分细胞和标记酸性细胞器的独特药物类染料的分析。

  ● 市面上唯一可用于长期监测细胞毒性作用的商业化产品。

  ● 高通量快速检测:染料仅需10-15分钟孵育。

  ● 无需与人工磷脂类似物共同培育进行检测,消除了混杂染料所造成伪像的可能性。

  ● 监控溶酶体积累长期药物治疗的反应。

  ● 定量分析,包括药物诱导,3个小时即可完成



试剂盒组成


  10×双色检测试剂:2×1 mL
  检测缓冲液:20 mL

  Verapamil 对照:3 μmoles
  10×分析缓冲液:15 mL

 


◆案例应用


1、消除混杂染料所造成伪像


  在短短15分钟,LYSO-ID® 红染料培养消除了混杂染料所造成伪像的可能性。在24小时内U-2 OS细胞的荧光强度对应不同浓度氯喹。在药物治疗期间,把用LipidTox染料(绿线)染色的细胞放在荧光脂质中培育24小时。在药物培育后,用LYSO-ID® Red dye(red line)或Hoechst公司产品33342(蓝线)染色细胞15分钟。


溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit


2、激发和发射光谱


  ALYSO-ID® Red Detection Reagent;B是Hoechst 33342细胞核染色。

溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit

3、溶酶体扰动活性治疗学的高通量筛选


  使用传统的荧光酶标仪去估测在U-2 OS细胞里维拉帕米的毒性。用维拉帕米处理U-2 OS的细胞18小时后,用LYSO-ID® Red dye染色15分钟。高Z因子(0.87为100 μM的维拉帕米)显示LYSO-ID® Red dye适合HTS的应用。Hoechst可用作复染剂,归一化控制细胞数目。

溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit

 4、细胞的复合亮场和荧光显微镜图像


  U2-OS细胞(左),用64 μM氯喹预先处理5小时的细胞(右)。用LYSO-ID® Red dye来染色细胞10分钟。用Hoechst 33342 染料进行细胞核复染。

溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit

5、使用LYSO-ID® Red dye来估测U-2 OS细胞药物诱导的溶酶体的累积


  这两种化合物是阳离子和两亲性,并且可观察到诱导溶酶体内磷脂异常累积,导致板层体的形成。由图中增加的红色荧光可知,U-2 OS细胞对磷脂诱导药物的处理,导致溶酶体数目和体积的增加。细胞核的复染用Hoechst 33342染料(蓝色)。

溶酶体细胞毒理检测试剂盒                              Lyso-ID® Red cytotoxicity kit

(A)未处理的细胞 (B)氯丙嗪,28µM (C)维拉帕米,200 µM

相关产品


产品编号

产品名称

包装

ENZ-51034-0100

Lyso-ID® Green detection kit for microscopy

100 tests

ENZ-51005-0100

Lyso-ID® Red detection kit (GFP-Certified®) for microscopy

100 tests

 

产品编号 产品名称 产品规格 产品等级
ENZ-51015-KP002 Lyso-ID® Red cytotoxicity kit (GFP-Certified®) for microplates
 溶酶体细胞毒理检测试剂盒(红色荧光)(绿色细胞系)(微孔板)
1 kit

LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质) 脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)

脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

LipiRADICAL Green是特异性荧光检测脂质过氧化反应的上游因子脂质自由基的试剂。可用于活细胞成像、样品中脂质自由基含量的相对定量以及样品中脂质自由基的结构分析和全面鉴定。另外,OH-Pen还可作为脂质自由基特异性中和剂使用。


※ 本产品基于九州大学大学院药学研究院 生命物理化学领域 山田健一教授的研究结果商品化并销售。

※ 本产品仅供研究用,研究以外不可使用。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

本试剂的概要图和活细胞成像示例


脂质自由基发生特异性反应产生绿色荧光的LipiRADICAL Green原理示意图(左),以及用药物刺激Hepa1-6细胞时的活细胞成像示例(右)。

◆什么是脂质过氧化反应(LPO)和脂质自由基(Lipid radical)?


脂质过氧化反应(lipid peroxidation; LPO)是指由于氧化应激脂质被氧化分解的反应,是脂质分解的过程之一。以含有多不饱和脂肪酸(Polyunsaturated fatty acid; PUFA)的脂质为起点,目前已提出两种脂质过氧化反应的发生过程:

1.氧化应激引起的脂质自由基产生

2. Lipoxygenase引起的过氧化脂质生成和铁离子依赖性过氧化脂质自由基的产生

 

第1种发生过程是由含PUFA的脂质暴露于氧化应激(活性氧ROS)时产生脂质自由基(L.;Lipid radical)开始。脂质自由基容易被氧化并转化为过氧化脂质自由基(LOO・; Lipid peroxyl radical),诱导自由基连锁反应。在第2种发生过程中,含PUFA的脂质被过氧化催化酶lipoxygenase转化为过氧化脂质(LOOH),并在存在大量的铁离子Fe2+ 时会诱导产生过氧化脂质自由基(LOO・)。过氧化脂质自由基与其他脂质反应,诱导自由基连锁反应。

两种过程所产生的过氧化脂质自由基(LOO・)都会在与其他脂质发生自由基反应并扩大自由基连锁反应,同时产生各种过氧化脂质(LOOH)。该自由基连锁反应直至被抗氧化剂聚合前会持续进行,并生成各种脂质结构或醛,最终产生复数的反应活性醛,如acrolein、malondialdehyde(MDA)、4-hydroxy-2-nonenal (4-HNE)等。以这些下游活性物质为起因,会对ER应激、细胞毒性和诱导铁死亡等产生各种影响。

脂质自由基(以及过氧化脂质自由基)被认为是脂质过氧化反应中最重要的最上游因子,虽然其检测方法备受期待,但直到现在,也仅有电子自旋共振(ESR)法等需要特殊设备的方法。LipiRADICAL Green和OH-Pen是由九州大学大学院药学院研究院生命物理化学系的山田健一教授等人开发的、具有新型氮氧化物骨架的脂质自由基响应性荧光试剂(原著名称为NBD-Pen)和抑制剂,它们不与活性氧自由基反应,实现特异性响应脂质自由基。由于LipiRADICAL Green可通过荧光检测来观察/分析脂质自由基,因此可用作以脂质自由基为中心的脂质过氧化反应的新工具。OH-Pen是从LipiRADICAL中去除荧光基团NBD的化合物,与一般的自由基中和剂(TEMPO等)不同,对脂质自由基显示高选择性,可作为脂质过氧化反应的特异性抑制剂使用。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质



◆原理


LipiRADICAL Green是向稳定自由基化合物的氮氧化物衍生物中添加荧光色素NBD的化合物。由于氮氧化物对脂质自由基显示高特异性,所以导入了戊基。LipiRADICAL Green此时处于消光状态,但通过脂质自由基与自由基-自由基偶联形成共价键后,显示绿色荧光。通过观察该绿色荧光强度,可相对定量样品中脂质自由基含量。

LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

OH-Pen是LipiRADICAL Green的NBD转化为羟基的化合物,显示相同的脂质自由基选择性以及拥有相同的脂质自由基中和作用。因此可将其用作脂质过氧化反应的抑制剂。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

概述:对使用LipiRADICAL Green的脂质自由基进行全面分析

通过使用LipiRADICAL Green的荧光检测LC/MS-MS法可全面分析脂质自由基和过氧化脂质自由基。原著论文5中,已成功地从5种类型的PUFA中鉴定出共计132种脂质自由基。以下为流程概述,详细的实验方案、LC/MS-MS设置方法/分析方法,请参阅原著论文5。


■概述

步骤1

 添加本试剂至含脂质的自由基样品中,并荧光标记脂质自由基。

  若是动物实验,将本试剂施药于小鼠等动物并在动物体内荧光标记脂质自由基后,马上摘除器官并提取脂质组分。

步骤2

 通过荧光检测LC/MS进行绿色荧光标记产物的质量分析。

步骤3

 减去所得质量值中LipiRADICAL Green的分子量(理论值389.2068),并推断结构。

LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质



◆特点

LipiRADICAL Green

● 本试剂为消光状态,与脂质自由基/过氧化脂质自由基特异性反应,发出绿色荧光。

● 检测波长标准:激发470 nm /荧光520-600 nm(最大~540 nm)。 

※ 详情请参阅数据。

● 对脂质自由基和过氧化脂质自由基具有特异性,在活性氧(H2O2、ClO・、O2・、・OH)中不发出荧光。

● 可通过荧光强度相对定量体外样品中的脂质自由基含量。

● 施药于动物个体后,可在组织水平上进行染色以及相对定量活体内的自由基含量。

※ 由于脂质自由基非常不稳定且会迅速分解,需要对实验方法和条件设置进行验证。详情请参阅原著论文1。

● 可用于评价任意化合物的脂质自由基诱导活性和抗氧化活性。

※ 详情请参阅原著论文4。

● 通过用荧光检测LC/MS可全面结构分析脂质自由基和过氧化脂质自由基。

※ 脂质自由基和过氧化脂质自由基的结构分析方法,请参考原著论文5。

OH-Pen

● 与脂质自由基和过氧化脂质自由基发生特异性反应以抑制自由基连锁反应,可用作脂质过氧化反应信号上游的抑制剂。

● 虽然是自由基化合物,但非常稳定,可体外施药至动物个体。

● 肝细胞癌的动物实验模型(diethylnitrosamine(DEN)给药模型)中显示,可抑制DEN诱发的脂质过氧化反应信号和组织损伤标志物。

注意:LipiRADICAL Green和OH-Pen的区别在于有无荧光基团(请参阅“原理”),对脂质自由基的反应性相同,同时使用时,可能会引起对

注意:脂质自由基的竞争性反应,因此需注意使用方法。

原著论文

1) Yamada Nat. Chem.Biol.,12,608~613(2016)Fluorescence probes to detect lipid-derived radicals.

2) Enoki et al., Chem.Commun.,53,10922~10925(2017)Lipid radicals cause light-induced retinal degeneration.

3) Ishida et al., Free Radical Biol.Med.,113,1487~493(2017)Detection and inhibition of lipid-derived radicals in low-density lipoprotein.

4) Mishima et al., J.Am. Soc.Nephrol.,31,280~296 (2020)Drug Repurposed as antiferroptosis agents suppress organ damage, including AKI, by functioning as lipid peroxyl radical scavengers.

5) Matsuoka et al.,Anal. Chem.,92,6993~7002(2020)Method for Structural Determination of Lipid-Derived Radicals.


参考数据

脂质自由基特异性荧光光谱

添加花生四烯酸(AA)和Lipoxygenase(LOX)至LipiRADICAL Green,观察470 nm的激发荧光。在未添加LOX的条件下,几乎没有观察到荧光,而添加LOX并产生脂质自由基后,可观察到500-650 nm范围内的荧光(最大540 nm附近)(左)。由此看出,荧光强度取决于添加的LOX浓度(右)。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质



自由基特异性

观察在以下条件中添加各试剂至LipiRADICAL Green的荧光强度(激发470 nm/荧光530 nm)。可观察到活性氧中的荧光几乎没有变化,而通过LOX酶或氧化诱导物质(AAPH和MeO-AMVN)的3种脂质产生的脂质自由基产生时的荧光强度有所上升。

H2O2, ClO , KO2(O2・),・OH :0.5 mM Lipids 0.5 mM (LA: linoleic acid, ALA: α-linoleic acid, AA: arachidonic acid ) + LOX 2.5 μg/mL or AAPH 10 mM or MeO-AMVN 50 μM


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质


◆应用数据

活细胞成像

添加LipiRADICAL Green(1 μM)至Hepa1-6细胞培养20 min后,追加致癌性亚硝胺化合物DEN(30 mM)培养20 min,然后每隔2 min用激光共聚焦荧光显微镜进行活细胞成像(激发458 nm/荧光490-674 nm)。经DEN处理的细胞在添加试剂后,荧光强度立即随培养时长的增加而增加,这表明DEN是按顺序产生脂质自由基的。荧光显微镜图像为添加试剂后20 min内的数据。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质



体外检测LDL来源的脂质自由基

用氧化诱导物质Hemin或AAPH处理纯化的低密度脂蛋白LDL(20 μg protein/mL),添加LipiRADICAL Green(10 μM)并观察1 h内的荧光强度(激发470 nm/荧光530 nm),可检测到Hemin、AAPH随时间推移和试剂浓度依赖性荧光强度的增加,出现了不同的增加趋势。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质


脂质自由基结构分析

1)评价由氧化诱导剂(AAPH + Hemin)产生的自由基

体外添加LOX(10 μg/mL)和氧化诱导物质AAPH+Hemin(10 μM)至花生四烯酸(AA)中,诱导脂质自由基后添加LipiRADICAL Green并进行检测反应。之后通过Bligh&Dyer法纯化脂质成分,并用荧光LC/MS-MS对AA产生的自由基进行全面分析。


上图:荧光LC色谱(激发470 nm/荧光530 nm)。检测出多个峰,对各个峰进行MS-MS分析。

下图:用MS-MS分析比较经鉴定的各种脂质自由基生成量(注:用各自由基种类的LC峰面积的相对定量)。鉴定8种类型的AA过氧化脂质自由基(圆图中的红线),此外还鉴定了由AA裂解产生的29种脂质自由基(条形图、绿线)。

有关详细的实验方案和分析方法,请参阅原著论文5。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质


2)DEN诱导时内源性产生的脂质自由基检测

向小鼠施以致癌性亚硝胺化合物DEN,分别在1 h、4 h、24 h后进行麻醉,向腹腔内施以LipiRADICAL Green,之后切除肝脏并压碎,用Bligh&Dyer法制备脂质提取液。并用荧光LC/ MS对各提取物进行各脂质自由基的鉴定以及相对定量。另外,NBD-Pen给药前15 min先施以脂质自由基抑制剂OH-Pen。可观察到左图所示的荧光LC色谱图,用MS/MS分析鉴定出共计11种类型的脂质自由基。随时间观察各脂质自由基种类(右图为C5H11的检测结果),可观察到DEN给药4 h后质谱峰面积大幅增加,而24 h后减少。LipiRADICAL Green给药前,经OH-Pen处理的小鼠脂质自由基被明显抑制。

有关详细的实验方案和分析方法,请参阅原著论文5。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

3)使用本试剂进行体外鉴定脂质自由基

使用本试剂从5种PUFA【亚油酸(LA),α-亚麻酸(ALA),花生四烯酸(AA),二十二碳六烯酸(DHA),二十碳五烯酸酯(EPA)】中经LOX、AAPH以及Hemin处理后鉴定的脂质自由基列表如下(摘自原著论文5)。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质

通过OH-Pen抑制亚硝胺诱导肝细胞癌

向大鼠施以致癌性亚硝胺化合物DEN后,1 h后再施以OH-Pen。分别切除慢性模型12周后和急性模型24 h后的大鼠肝脏。


上图:慢性模型的肝癌。DEN给药使恶性肿瘤亢进,而施以OH-Pen可明显抑制该反应。

中图:急性模型LPO代谢产物的定量评价。发现OH-Pen抑制了DEN引起的MDA、4-HNE及Acrolein这三种LPO下游产物的增加。

下图:急性模型组织损伤标记物的定量评价。发现OH-Pen抑制了DEN引起的8-OHdG、ALT及细胞凋亡量的增加。


这些结果显示,DEN引起LPO亢进并产生脂质自由基后会诱导各种毒性信号,但OH-Pen可通过抑制初期脂质自由基连锁反应来抑制癌变。


LipiRADICAL Green(检测试剂)/OH-Pen(抑制物质)                              脂质过氧化研究的新工具!脂质自由基检测试剂和抑制物质


※ 本页面产品仅供研究用,研究以外不可使用。


◆常见问题FAQ


问:ES-Buffer可以与非FUJIFILM Wako生产的鲎试剂一起使用吗?

答:是的。该缓冲液不限所搭配的鲎试剂品牌,可与其他品牌非特异性鲎试剂配合使用,阻断(1→3)-β-D-葡聚糖与

  鲎试剂反应,从而将鲎试剂转化为内毒素特异性试剂。

 

问:如何使用ES-Buffer?

答:只需按照包装中的鲎试剂说明书,用ES-Buffer代替LRW(鲎试剂用水)来溶解和制备鲎试剂,即可制备内毒素

  特异性鲎试剂。之后按照鲎试剂制造商的说明书进行操作即可。


产品编号 产品名称 产品规格 产品等级
FDV-0042 LipiRADICAL Green 0.1 mg

FAOBlue 可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

FAOBlue

FAOBlue是一款可以通过蓝色荧光可视化脂肪酸分解的共同途径——脂肪酸β-氧化(FAO)的活性的试剂。

通过荧光成像,可以简单地检测出过去难以检测的活细胞中的脂肪酸β-氧化活性。

该产品可广泛应用于对比评估不同细胞种类之间的β-氧化,探索促进或抑制β-氧化活性的化合物,β-氧化相关酶群的基础研究等领域。

 

※ 本产品基于九州大学研究生院药学研究院药物发现化学生物学领域 王子田彰夫教授的研究成果,

※ 由Funakoshi株式会社商品化并销售。

 本产品仅供研究使用。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

使用FAOBlue可视化HepG2细胞的FAO活性


添加FAOBlue到HepG2细胞中,观察活细胞成像,可从细胞中观察到蓝色荧光。另一方面,若使用FAO抑制剂进行前处理,则荧光强度明显减少,由此可知,蓝色荧光的强度取决于FAO的活性。

何为脂肪酸β-氧化(Fatty acid beta-oxidation; FAO)

脂肪酸是构成细胞的各种脂质的基本要素,与葡萄糖、氨基酸并称为能源。尤其是在葡萄糖不足而饥饿的时候,脂肪酸会分解活跃,产生大量的ATP。虽然脂肪酸根据碳链的长短以及不饱和度的差别而存在不同的种类,但是由于它的分解属于线粒体等细胞器的共同分解途径,因此这种途径被统称为脂肪酸β-氧化(Fatty acid beta-oxidation; FAO)。

脂肪酸β-氧化主要通过4步酶反应——1)脂肪酸β位的氧化,2)β位的水合,3)β位的氧化,4)裂解,被阶段性分解为2个碳原子的短链脂肪酸和作为ATP原料的乙酰CoA。其中生成的2个碳原子的短链脂肪酸再通过同一个循环,以2n个碳原子的短链脂肪酸重复分解。

研究提出,癌症以及非酒精性肝炎(NASH)等疾病中,脂肪酸β-氧化会出现很大的变动,因此开发检测脂肪酸β-氧化活性的方法备受期待。然而,在活细胞中检测多种酶参与的脂肪酸β-氧化一直以来都十分困难。

FAOBlue是一款新型脂肪酸β-氧化应答型荧光探针,由九州大学研究生院药学研究院、专攻药物发现化学生物学领域的王子田彰夫教授开发。只需将产品添加到培养基中的简单操作,便可以通过荧光观察定量脂肪酸β-氧化活性。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

◆原理


FAOBlue是一种在碳原子数为9的壬酸的碳链末端添加了蓝色荧光色素香豆素衍生物的化合物,此外,通过用乙酰氧基甲基酯保护末端脂肪酸来提高细胞膜透过性。虽然FAOBlue中含有香豆素衍生物,但是在该状态下,它不会在405 nm激发下发出荧光。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

1. 附着在羧基的乙酰氧甲基具有高疏水性,因此FAOBlue可以跨越细胞膜,有效地摄入到细胞中。

2. 通过细胞内的酯水解酶去除乙酰氧基甲酯,转换成游离脂肪酸的形态。

3. 通过脂酰CoA合成酶转换成脂酰CoA,摄入β-氧化途径。

4. 通过β-氧化循环壬酸(C9)按庚酸(C7)、戊酸(C5)、丙酸(C3)的顺序转换,在第四次β-氧化循环的丙酸

4. 被分解时,香豆素衍生物被释放出来。香豆素衍生物在405 nm激发下发出蓝色荧光。

5. 由于游离的香豆素衍生物扩散到整个细胞中,因此通过检测细胞内的蓝色荧光强度,可以实时且定量的评价β-氧

4. 化活性。

 

※ 通过添加肉碱穿梭抑制剂的Etomoxir,有效地抑制了细胞内的荧光上升。

※ 该结果证明FAOBlue主要检测线粒体的FAO活性。

特点

● FAOBlue处于消光状态,分解后的游离香豆素衍生物呈现出比分解前更高的荧光强度。

● 添加培养基后,30 min~120 min后便可观察。

● 无需特别操作即可检测β-氧化活性。

● 实例验证能观察多种细胞类型的β-氧化。

● 有抑制药物依赖性β-氧化和因促进而引起的活性变化的成功检测案例。

● 检测波长:激发405 nm/荧光460 nm。

※ 注意:

使用共聚焦激光显微镜时,推荐使用405 nm激光激发。如果本试剂在330~380 nm的范围内激发的话,会观察到无关FAO活性的370~450 nm(最大荧光波长410 nm)的荧光。使用荧光显微镜时,为了特异性观察FAO活性,推荐选择激发波长在390~430 nm范围内的激发光滤光片。详情请参考数据实例:FAO特异性吸收光谱、荧光光谱的变化。

原著论文


Uchinomiya et. al., Chem. Commun. 56, 3023~3026 (2020) .

”Fluorescence Detection of Metabolic Activity of Fatty Acid Beta Oxidation Pathway in Living Cells.”

应用


● 评价各种细胞的β-氧化活性

● β-氧化相关的基因基础研究

● 抑制或促进β-氧化的化合物的探索  等

操作方法概况


1. 在HBS中溶解FAOBlue至终浓度为5~20 μM*1

1. *1  针对不同的细胞类型,合适的浓度有所差异。建议根据具体实验进行探讨。

2. 去除培养基,用HBS清洗细胞2次。

3. 向细胞添加含有FAOBlue的HBS。

4. 在37°C下培养30 min以上*2

1. *2  针对不同的细胞类型,合适的培养时长有所差异。建议根据具体实验进行探讨。

5. 更换培养基后*3,通过成像观察蓝色荧光(Ex. 405 nm/Em. 430~480 nm)。

1. *3  染色后的培养基更换是非必须的。即使不清洗也可进行观察。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

实验注意点


由于本试剂使用405 nm的激发光,根据不同的观察对象,可能会观察到其自发的荧光。建议同时进行未添加本试剂的阴性对照实验。尤其是在显微镜下观察到点状荧光信号时,可能就是细胞的自发荧光。

 

◆应用实例


FAO特异性吸收光谱、荧光光谱的变化

FAOBlue以及香豆素衍生物的吸收光谱(左)和荧光光谱(右)。

FAOBlue在通过FAO转换成香豆素衍生物后,吸收最大值由350 nm变为405 nm的长波长。因此,在405 nm的激发条件下,FAOBlue不会发出荧光,只有在通过FAO释放香豆素衍生物时才会发出蓝色荧光。

 

※ 注意:

若使用处于FAOBlue的吸收最大值350 nm左右的光激发,FAOBlue也会发出蓝色荧光(380~450 nm;最大波长400 nm)。若在荧光显微镜中使用普通的DAPI滤光片,将会同时激发未反应的FAOBlue以及FAO反应后的香豆素衍生物。所以在选择滤光片时请格外注意。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

可视化各种细胞类型中的FAO活性


在4种癌细胞中加入FAOBlue,培养一定时间后进行荧光观察。所有细胞都观察到了蓝色荧光,而添加FAO抑制剂etomoxir后荧光显著衰减,由此可知,蓝色荧光是由FAO活性引起的。


FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂


各种细胞的实验条件有所不同。

 HepG2 : 5 μM, 30 min

※ LNCaP: 20 μM, 120 min

※ HeLa : 20 μM, 120 min

※ A549 : 5 μM, 30 min


观察刺激依赖性β-氧化的变化


HepG2细胞添加脂质代谢促进剂AICAR*2(200 μM,3 h)或部分FAO抑制剂ranolazine(200 μM,12 h)进行前处理后,添加FAOBlue(5 μM)培养30 min。进行荧光观察时,可以看到对比对照实验(未处理),AICAR中荧光强度明显增强,ranolazine中荧光强度明显降低。

*2  AICAR : AMPK(AMP-activated protein kinase)活化剂具有活化脂质代谢的功能。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

药物作用的定量分析


使用FAOBlue可以定量分析药物对FAO的效果。用非酒精性脂肪肝疾病(NAFLD)的候选治疗药ND-630(acetyl-CoA carboxylase inhibitor)前处理HepG2细胞4 h后,添加FAOBlue(5 μM)培养30 min。使用共聚焦激光显微镜评价蓝色荧光强度时,可以观察到依赖于ND-630浓度的荧光强度增加。由此可知,ND-630增强了FAO的活性。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

NASH模型小鼠分析


非酒精性肝炎(NASH)是一种与脂质相关的疾病,已知会降低脂肪分解的速度。向正常小鼠和NASH模型小鼠以口服形式给药增强脂质代谢的bezafibrate后,回收其肝脏制备初代培养肝细胞。向各个细胞加入FAOBlue(5 μM)观察其FAO活性,结果显示,对比正常小鼠来源细胞,NASH模型小鼠来源细胞的FAO活性明显被抑制。另一方面,我们可以看到给药bezafibrate的NASH模型小鼠来源细胞中FAO恢复了活性。

本试剂可用于脂质相关疾病模型中的FAO定量分析。

FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂

※ 本页面产品仅供研究用,研究以外不可使用。


相关资料


FAOBlue                              可荧光定量活细胞的脂肪酸β-氧化(FAO)活性的试剂


FAOBlue

产品编号 产品名称 产品规格 产品等级
FDV-0033 FAOBlue (Fatty Acid Oxidation Detection Reagent)
FAOBlue 脂肪酸氧化检测试剂
0.2 mg

​用于检测细胞内多胺的荧光试剂PolyamineRED

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

​用于检测细胞内多胺的荧光试剂PolyamineRED用于检测细胞内多胺的荧光试剂PolyamineRED


PolyamineRED是一种与多胺特异性反应,并向多胺添加红色荧光色素TAMRA的试剂。不与单胺或氨基酸反应。由于本产品可用于活细胞,因此能够简单地检测出细胞内多胺并进行半定量。


本产品基于国立研究开发法人 理化学研究所 开拓研究本部 田中生体机能合成化学研究室的研究成果商品化。

本产品仅供科研使用。不可应用于临床。

​用于检测细胞内多胺的荧光试剂PolyamineRED

PolyamineRED拥有细胞膜透过性,在细胞内与多胺发生反应并将TAMRA偶联至多胺。由于TAMRA与多胺结合后会失去膜透过性,所以可以通过清洗去除未反应的PolyamineRED,因此可选择性实现细胞内多胺的可视化。已知多胺会在癌细胞中过量产生,所以使用PolyamineRED可以检测出癌细胞中重要的多胺信号。详情请参考应用实例。

 


◆多胺是什么

多胺是含有两个或以上氨基的直链烷基胺的总称。已从生物体中鉴定出各种结构的多胺,主要为腐胺(putrescine),亚精胺(Spermidine)和精胺(Spermine)。以亚mM~mM的高浓度存在于哺乳动物、微生物、植物的细胞中。

据报导,它在生理pH下显示聚阳离子性,并通过与DNA / RNA和蛋白的相互作用呈现出各种生理活性。由于癌细胞中多胺合成基因ornithine decarboxylase (ODC)的过表达会引起多胺的过量产生,因此多胺有望成为癌症标记物。但是,由于多胺的结构简单因而难以分析,仅限于通过HPLC的低通量分析。

另外,分析多胺必须在细胞破裂后进行去除蛋白和其他小分子的前处理,所以可能会因前处理产生偏差。因此,无需前处理便可在活细胞内定量多胺的方法备受期待。

PolyamineRED为理化学研究所 田中主任研究员等所开发的新型多胺检测试剂,是一款特异性标记细胞内多胺的TAMRA并使其可视化的多胺检测试剂。

​用于检测细胞内多胺的荧光试剂PolyamineRED

多胺在生物体内合成的路径

◆特点


● PolyamineRED是一款利用甘氨酸炔丙基酯与多胺特异性且快速反应的试剂。可通过在多胺标记TAMRA使细胞内多胺可视化。

● 可用罗丹明滤光片组观察(激发/发射波长:560 nm/585 nm)。

● 对多胺(腐胺,亚精胺,精胺)显示高特异性,几乎不与氨基酸或单胺反应。

● 拥有细胞膜透过性,可用于活细胞的多胺检测。可通过清洗去除未反应试剂,而多胺-TAMRA复合物因多胺的聚阳离子性保留在细胞内。

● 无需前处理,仅需简单地操作即可检测细胞内多胺。

● 可通过细胞内荧光强度半定量多胺总量。*

● 可观察细胞内多胺的分布情况。

 

* 由于可检测出多胺总量,所以无法定量单个多胺种类。

​用于检测细胞内多胺的荧光试剂PolyamineRED

◆应用


● 细胞内多胺的半定量

● 评价多胺在细胞内的分布情况

◆原著论文


K. Vong, K. Tsubokura, Y. Nakao, T. Tanei, S. Noguchi, S. Kitazume, N. Taniguchi, K. Tanaka, Chem. Commun., 53, 8403~8406 (2017)."Cancer cell targeting driven by selective polyamine reactivity with glycine propargyl esters."

 


◆操作方法概要


1. 添加终浓度10~30 μM的PolyamineRED至新制备的培养基中。

2. 去除培养细胞的培养基,使用PBS清洗两遍。

3. 添加含有PolyamineRED的培养基。

4. 培养10 min以上。

5. 使用PBS清洗细胞三遍。

6. 甲醛固定后,进行任意染色并观察。

 

甲醇固定可能会导致多胺成分泄漏出细胞外,因此不建议使用甲醇固定。

​用于检测细胞内多胺的荧光试剂PolyamineRED

◆应用实例

 

癌细胞与非癌细胞的多胺检测


使用30 μM的PolyamineRED处理3种癌细胞(MCF7,MDA-MB-231,SK-BR-3)与2种非癌细胞(MCF10A,淋巴球)10 min,使用PBS清洗三遍,在DAPI染色后用福尔马林固定细胞。在癌细胞中观察到了TAMRA信号。另一方面,由于非癌细胞中的多胺数量较少,因此在MCF10与淋巴球中几乎检测不出TAMRA信号。

​用于检测细胞内多胺的荧光试剂PolyamineRED

多胺在细胞内的分布


使用30 μM的PolyamineRED处理MDA-MB-231 10 min后进行DAPI染色并固定细胞。在MDA-MB-231中,细胞核内检测出的多胺比细胞质多。使用PolyamineRED,可以评价细胞内多胺的分布情况。

​用于检测细胞内多胺的荧光试剂PolyamineRED

参考:甘氨酸炔丙基酯的多胺特异性


使用HPLC追溯甘氨酸炔丙基酯的模型分子(Benzyloxycarbonyl glycine propagyl ester)与多胺(腐胺,亚精胺,精胺),氨基酸以及单胺的反应。

仅与多胺(精胺,亚精胺,腐胺)发生反应,而对单胺(肾上腺素)和氨基酸(赖氨酸)几乎不反应。由此可知,氨基数越多,对多胺的反应性越高。(引用:原著论文)

物质名称

反应率%

精胺

82%

亚精胺

78%

腐胺

66%

肾上腺素

<1%

赖氨酸

2%

※ 本页面产品仅供研究用,研究以外不可使用。


产品编号 产品名称 产品规格 产品等级
FDV-0020 PolyamineRED (Intracellular Polyamine Detection Reagent)
PolyamineRED(细胞内多胺检测试剂)
0.5 mg

固紫B盐 Fast Violet B Salt

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

固紫B盐固紫B盐                              Fast Violet B Salt

Fast Violet B Salt

 


  固紫B盐是一种棕黄色偶氮染料。

  常用于细胞化学染色法,主要应用于偶氮偶联法中性粒细胞碱性磷酸酶染色。

 


◆产品信息


分子式: C30H28Cl4N6O4Zn
分子量: 743.78
cas号: 14726-28-4
外观: 浅黄棕色至黄棕色结晶或粉末
可溶性: 易溶于水

◆应用


可作为染料,对细胞进行染色,可用于:

● 细胞中的碱性磷酸酶染色

● 骨髓基质细胞的染色

 


◆应用案列


点击此处进一步了解应用案例


※ 本页面产品仅供研究用,研究以外不可使用。


产品编号 产品名称 产品规格 产品等级
060-01081 Fast Violet B Salt
固紫B盐
1.5 g Wako Special Grade

DNs-Rh <Cell-based GST Activity Assay Reagent> 可用于活细胞的GST活性检测探针

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

可用于活细胞的GST活性检测探针DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

DNs-Rh <Cell-based GST Activity Assay Reagent>




DNs-Rh是可以在活细胞中观察Glutathione S-transferase(GST)酶活性的荧光探针。由于可以根据GST活性发出绿色荧光,可用于评价细胞内GST的活性。GST亚家族跨度广泛,可以实现总GST活性的可视化。

※本产品基于名古屋大学 理学研究科 阿部洋教授的研究成果商品化。

※本产品仅供科研,严禁用于科研以外用途。


DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

DNs-Rh具有细胞膜透过性,随着细胞内GST酶活性改变而产生绿色荧光。通过显微镜或流式细胞仪定量荧光强度,从而实现GST活性的相对定量。


GST及其活性检测方法


Gluthathione S-Transferase(GST)家族广泛存在于细菌及动植物中,细胞内的疏水性外源物质(xenobiotics)被添加到gluthathione(GSH)中,具有转换为GSH缀合物(GSH-conjugate)的活性。GSH缀合物通过MRP(multidrug resistance-associated protein)运输积极地排出细胞外,存在去除异物的机制。因此,GST可以作为排出具有潜在细胞毒性的外源性物质的解毒因子而发挥作用。

另一方面,由于大多数的抗癌剂等医药品也是通过GST转换为GSH缀合物排出细胞外,GST作为耐药因子具有削弱药效的负面效果。尤其是随着癌症的恶化特定的GST同种型(GSTP1)的表达量增强,癌细胞获得了强耐药性。

GST既是异物代谢和解毒作用因子,也具有耐药性因子的作用。因此,需要合适的检测细胞内GST活性的技术,但传统方法仅限于in vitro 的活性检测,缺少在活细胞内观察活性的方法。

名古屋大学阿部洋教授及其研究人员们开发的DNs-Rh是细胞膜透过性的化合物,是一种可以根据GST酶活性产生绿色荧光的GST活性应答探针。因为可以用于活细胞,进行各类细胞的GST活性的定量化和刺激依赖性的GST活性的监测,可以用于传统方法无法实现的基于细胞水平的抑制剂的开发等的各种应用。



DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

GST作用示意图



GST活性检测用探针的比较

探针名称

传统方法(CDNB)

DNs-Rh

检测方法

UV(~340 nm)

绿色荧光(Ex / Em = 496 / 520 nm)

检测对象

广泛的GST家族

广泛的GST家族

适用实验

in vitro(如裂解液或纯化酶)

可以

可以

活细胞实验

成像

不可以

可以

流式细胞术

不可以

可以

检测灵敏度

低(UV测定)

高(荧光测定)

高通量和简便性

低(需要配制裂解液)

高(活细胞状态下观察)

非特异性反应(GST非依赖的GSH反应性)

与其他的因子同时检测

不可以

可以(可以和蓝色和红色荧光同时使用)

◆详细原理


DNs-Rh是在Rhodamine110上添加2个GST基质2,4- dinitrobenzene sulfonamide(DNB)的化合物,呈消光状态。DNB基质通过GST转换为GSH缀合体,Rhodamine 110释放出来并发出绿色荧光(激发/荧光 = 496 / 520 nm)。DNs-Rh最初开发作为检测体内硫醇的试剂1),但后来却被发现其也能高效用作GST活性的检测试2)。与硫醇应答相比,GST应答性更强,现在我们期待DNs-Rh能成为活细胞用的GST活性检测探针4)


DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

原理示意图

◆参考文献

1.

Shibata, A.,et al., Bioorg. Med. Chem. Lett., 18, 2246-2249 (2008) [PMID:18358719]

"Rhodamine-based fluorogenic probe for imaging biological thiol."

2.

Alander, J., et al., Anal. Biochem., 390, 52-56 (2009) [PMID:19348782]

"Characterization of a new fluorogenic substrate for microsomal glutathione transferase 1."

3.

Zhang, J.,et al., J. Am. Chem. Soc., 133, 14109-14119 (2011) [PMID:21786801]

"Synthesis and characterization of a series of highly fluorogenic substrates for glutathione transferases, a general stategy."

4.

Shishido, Y., et al.,ChemBioChem., (in press)

"A covalent inhibitor for Glutathione S-Transferase Pi (GSTP1-1) in human cells."

◆特点


● 根据GST活性释放rhodamine110产生绿色荧光(激发/荧光=496/520 nm)。

● 具有细胞膜通透性,只需添加至培养基即可使用。

● 已确认与各种GST家族具有交叉反应性

 


◆应用实例


荧光光谱(反应前后)


向GSTP1重组体(10 μg/mL)中添加DNs-Rh(1 μM)、GSH(1 mM)30分钟后,测定激发光为490 nm时的荧光光谱。仅在GSH / GSTP1存在时观察到了Emmax 520 nm附近的荧光。


DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

荧光光谱



GST in vitro活性检测


向GSTP1重组体(10 μg/mL)中添加DNs-Rh(1 μM)、GSH(1 mM)观察绿色荧光强度(Ex / Em 490 / 520 nm)随时间的变化,纵轴将1 μM Rhodamine 110溶液的荧光强度设为100%。GST存在时,可以发现(GSH(+)/ GST(+))在约30分钟左右的时候荧光强度明显增强,约55%的探针转换成Rhodamine,相对的,在GSH(+)/ GST(ー)的条件下,可以观察到GSH稍微有所增加,但是Rhodamine的转换率只有3%。

正如原理所述,DNs-Rh与硫醇化合物反应甚微。与GST存在时相比反应明显较弱,但是也有可能经过几个小时的长时间反应使荧光强度增强,因此建议在反应30~60分

※ 钟左右后即刻进行观察。

DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

活细胞荧光测定



培养细胞中的GST活性测定


向HeLa细胞中添加2.5 μM的DNs-Rh,孵育30分钟后用荧光显微镜(Ex 480 / Em 535 nm)进行观察。添加1 mM的不可逆性抑制物质CNBSF(#FDV-0031)作为前处理,反应15分钟。通过DNs-Rh 从细胞内观察到 Rhodamine 110 的绿色荧光,但是用抑制物质 CNBSF 进行前处理时,荧光强度明显减弱。

※ 成像注意:本试剂是通过观察GST释放出来的rhodamine 110在细胞内的分布,虽然可以基于荧光强度观察GST的相对活性强度,但不能实现细胞内GST定位的可视化。

DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针


培养细胞荧光成像



流式细胞术定量GST活性


左:向K562细胞中添加2.5 μM的DNs-Rh,5、60、180分钟后用流式细胞仪检测(Ex / Em = 488 / 525 nm)。

左:可以观察到荧光强度随时间变化增强。

右:向K562细胞和HL60细胞中添加2.5 μM的DNs-Rh,60分钟后用流式细胞仪检测(Ex / Em = 488 / 525 nm)。

右:与K562细胞相比,每个HL60细胞都显示出更高的GST活性。

DNs-Rh <Cell-based GST Activity Assay Reagent>                              可用于活细胞的GST活性检测探针

流式细胞仪检测

※ 本页面产品仅供研究用,研究以外不可使用。

◆相关产品


可用于活细胞的不可逆GST抑制剂

CNBSF <Irreversible GST Inhibitor>

产品编号 产品名称 产品规格 产品等级
FDV-0030 DNs-Rh <Cell-based GST Activity Assay Reagent> 0.1 μmol

Mitex 表面滤膜疏水性PTFE过滤膜10微米孔径LCWP04700

详细介绍

Mitex表面滤膜疏水性PTFE过滤膜10微米孔径LCWP04700

说明:Mitex 表面滤膜,PTFE,疏水,10 µm,47 mm,白色,光面

商标名:Mitex

数量/包装:100

滤膜材质:Hydrophobic PTFE

滤膜商标名:Mitex

水通量,mL/min x cm2:126

23 °C 时的泡点:≥0.03 bar

zui高操作温度,°C:260

滤膜类型:表面滤膜

滤膜孔径,µm:10.0

可润湿性:疏水

滤膜直径,mm:47

滤膜代码:LCWP

滤膜颜色:白色

产品名称:Mitex 表面滤膜

滤膜表面:光面

厚度,µm:130

空气流速,L/min x cm2:14

孔隙率 %:60

Mitex 表面滤膜

Mitex 是一种没有支撑物的疏水性 PTFE 膜。 可用于其它膜不能承受的极端的化学或温度条件下使用(zui高 260 ° C)。

详细说明及技术参数
应用 滤膜代码1 孔径
(µm)
泡点
(bar)2
厚度
(µm)
水的流速
(mL/min/cm23
空气流速
(L/min/cm24
使用温度
(°C)
成孔率
(%)
Fluoropore 滤膜(疏水)
澄清过滤酸、碱及溶剂,空气监测,过滤或气体换气,UV 光谱学 FGLP 0.22 1.0 150 24 5 130 85
FHLP 0.45 0.63 150 60 8 130 85
FALP 1.0 0.5 150 110 16 130 85
FSLW 3.0 1.0 150 286 20 130 85
FHUP 0.45 0.63 50 75 9 130 NA
Mitex 滤膜(疏水)
澄清过滤酸、碱和低温液体,澄清过滤燃料,分析水样,分离 RNA LSW 5 0.05 170 70 9 260 60
LCW 10 0.03 130 220 14 260 60
LCR 滤膜(亲水)
澄清过滤酸、碱、低温液体及稀释蛋白质溶液,澄清过滤燃料,分析水样,分离 RNA FHLC 0.45 NA 140 70 8 130 80
Omnipore 滤膜(亲水)
澄清过滤酸、碱溶液和几乎所有溶剂 JVWP 0.1 23.6 30 100      
JGWP 0.2 13.6 65 50      
JHWP 0.45 7.9 65 15      
JAWP 1.0 3.6 85 5      
JMWP 5 2.1 85 1.5      
JCWP 10 0.7 85 0.5      
1 对应目录编号的前 4 位
2 泡点使用甲醇确定 
3 Fluoropore 用甲醇确定;Mitex 和 LCR 用水
4 Mitex 的空气流速 是指 100 cm3 的空气穿过 1 in2 面积的膜所需的时间(秒)(Gurley 测试)

上海金畔生物科技有限公司代理millipore产品,咨询和选购